

STORMWATER DRAINAGE ANALYSIS

RESIDENTIAL DEVELOPMENT
BLOCK 4201.01, LOT 33.03
GROVERS MILL ROAD & MALL ACCESS ROAD
TOWNSHIP OF LAWRENCE, MERCER COUNTY, NEW JERSEY
BE# 21-210

DATE PREPARED: OCTOBER 12, 2023

DATE REVISED: JUNE 13, 2024 DATE REVISED: APRIL 16, 2025

> CALISTO J. BERTIN, P.E. N.J.P.E. LICENSE NO. 28845

STORMWATER DRAINAGE ANALYSIS

TOWNHOUSE DEVELOPMENT BLOCK 4201.01, LOT 33.03 GROVERS MILL ROAD & MALL ACCESS ROAD TOWNSHIP OF LAWRENCE, MERCER COUNTY, NEW JERSEY BE# 21-210

TABLE OF CONTENTS

	TABLE OF GOITHERTO	
ı	PROJECT SUMMARY	<u>PAGE</u>
I. II.	STORMWATER DRAINAGE CALCULATIONS 1. DESIGN CRITERIA 2. EXISTING RUNOFF 3. PROPOSED RUNOFF 4. PROPOSED ROUTING – BASIN 1 5. PROPOSED ROUTING – BASIN 2 6. PROPOSED ROUTING – BASIN 3 7. PROPOSED RUNOFF – BYPASS 8. PROPOSED RUNOFF – COMBINED (TOTAL) 9. EXISTING VS. PROPOSED RUNOFF 10. WATER QUALITY DESIGN 11. STORMWATER RECHARGE REQUIREMENT 12. STORM SEWER ANALYSIS TABLE 13. PREFORMED SCOUR HOLE DESIGN 14. GROUNDWATER MOUNDING ANALYSIS	1 1 1 2 3 5 7 7 8 8 9 10 10 12
ATTA	CHMENTS: ANNUAL GROUNDWATER RECHARGE ANALYSIS WORKSHEET STORM SEWER DESIGN CALCULATIONS TABLE 7-1: TYPICAL RUNOFF COEFFICIENTS NOAA POINT PRECIPITATION FREQUENCY ESTIMATES GROUNDWATER MOUNDING ANALYSIS WORKSHEETS TABLE 5-2: WATER QUALITY DESIGN STORM RAINFALL DISTIBU 2, 10 & 100-YR HYDROGRAPH REPORTS WATER QUALITY STORM HYDROGRAPH REPORTS	TION
MAPS	: SOIL BOUNDARY MAP EXISTING DRAINAGE AREA MAP PROPOSED DRAINAGE AREA MAP INLET DRAINAGE AREA MAP	DM1 DM2 DM3

STORMWATER DRAINAGE ANALYSIS

TOWNHOUSE DEVELOPMENT BLOCK 4201.01, LOT 33.03 GROVERS MILL ROAD & MALL ACCESS ROAD TOWNSHIP OF LAWRENCE, MERCER COUNTY, NEW JERSEY BE# 21-210

I. PROJECT SUMMARY

The proposed project consists of developing a vacant lot into a proposed residential development with 5 multifamily buildings. The entire site has an area of 6.86 acres. The existing site is mostly wooded. The proposed development will add 2.707 acres of impervious and contain 1.340 acres of new roof area.

For the stormwater drainage analysis, the portion of the site being disturbed will be considered the area of study. The area of study drains into the existing stormwater drainage system located in Grovers Mill Road. The total size of the studied drainage area is 5.229 acres.

Due to the increase in impervious surface, small-scale infiltration basins will be required to reduce the proposed runoff to meet the required rate reductions. The outlet of the drainage system will tie directly into the existing stormwater system in Grovers Mill Road. To address water quality, runoff from the proposed parking areas and driveways be treated by a sand filter located in each aboveground infiltration basin.

Below is a summary of the stormwater analysis results for Current Precipitation:

Frequency (year)	Existing (cfs)	Proposed (cfs)	Change (cfs)	% Exist.	Max. Allowable %
2	1.79	0.87	0.92	48.7%	50%
10	6.76	2.70	4.06	39.9%	75%
100	19.88	15.49	4.39	77.9%	80%

Below is a summary of the stormwater analysis results for Future Precipitation:

Frequency (year)	Existing (cfs)	Proposed (cfs)	Change (cfs)	% Exist.	Max. Allowable %
2	3.02	1.14	1.88	37.7%	50%
10	9.27	5.20	4.07	56.1%	75%
100	31.01	24.32	6.69	78.4%	80%

As per the above table, runoff directed towards the Grovers Mill Road stormwater system will be reduced to levels below the existing with the required reductions for all design storms.

66 GLEN AVENUE GLEN ROCK, NEW JERSEY 07452 (201) 670-6688 FAX (201) 670-9788 JOB
SHEET NO.
CALCULATED BY
CHECKED BY

SCALE

21-210: Residential Development - Lawrence, NJ						
1	OF					
MBL	DATE					
CJB	DATE					

13 4/16/2025 4/16/2025

II. STORMWATER DRAINAGE CALCULATIONS

1. <u>DESIGN CRITERIA</u>

All hydrographs and peak flow rates were calculated utilizing the Technical Release 55 (TR-55) method.

Rainfall distribution = C

County precipitation depths (P) for the 2, 10 & 100 year storm events have been adjusted for current and future conidtions based on N.J.A.C. 7:8-5.7(c) & (d).

2. EXISING RUNOFF

I) Area of Concern:

Drainage Area	Total	Woods	(acres)
	(acres)	HSG B	HSG C
Existing	5.229	2.998	2.231

The existing drainage area is located in multiple soil types (see Soil Boundary Map).

CN Values (Hydrologic Group A),

Woods (B) = 55 (Good Condition)

Woods (C) = 70 (Good Condition)

II) Peak Discharge (as determined by TR-55):

Existing Drainage Area								
	Current Future							
Frequency	Curve	T _c	Rainfall,	Rainfall, Peak Discharge Rainfall, Peak Dis				
(year)	Number	(min)	P (in)	(cfs)	P (in)	(cfs)		
2			3.34	1.79	3.84	3.02		
10	61	16.4	5.11	6.76	5.86	9.27		
100			8.66	19.88	11.33	31.01		

3. PROPOSED RUNOFF

The proposed pavement area and roof runoff will be directed into three small-scale infiltration (Prop - Basin 1, Prop - Basin 2 & Prop - Basin 3). The discharge from Basins 1 & 2 will be directed into Basin 3. The outflow from Basin 3 will flow into the existing drainage system on Grovers Mill Road. The remaining portion of the proposed drainage area (Prop - Bypass) will flow towards the wetlands to the southeast and eventually enter the Grovers Mill Road drainage system.

Drainage Area	Total	Pervious (acres)		Impervious
	(acres)	HSG B	HSG C	(acres)
Prop - Basin 1	0.809	0.196	0.155	0.458
Prop - Basin 2	0.925	0.535	0.000	0.390
Prop - Basin 3	3.027	0.456	0.706	1.865
Prop - Bypass	0.468	0.214	0.210	0.044

CN Values:

Pervious (B) = 79 (Poor Condition)

Pervious (C) = 86 (Poor Condition)

Impervious = 98

66 GLEN AVENUE GLEN ROCK, NEW JERSEY 07452 (201) 670-6688 FAX (201) 670-9788 JOB
SHEET NO.
CALCULATED BY
CHECKED BY
SCALE

21-210: Residential Development - Lawrence, NJ							
2 OF							
MBL	DATE						
CJB	DATE						

13
4/16/2025
4/16/2025

4. PROPOSED RUNOFF - BASIN 1

I) Peak Discharge: Proposed Drainage Area - Basin 1 (as determined by TR-55):

Proposed Drainage Area - Basin 1 (Pervious)							
				Current		Future	
Frequency	Curve	T _c	Rainfall,	Peak Discharge	Rainfall,	Peak Discharge	
(year)	Number	(min)	P (in)	(cfs)	P (in)	(cfs)	
2			3.34	0.68	3.84	0.85	
10	82	9.2	5.11	1.29	5.86	1.56	
100			8.66	2.55	11.33	3.49	

Proposed Drainage Area - Basin 1 (Impervious)							
		Current Futu			Future		
Frequency	Curve	T _c	Rainfall,	Peak Discharge	Rainfall,	Peak Discharge	
(year)	Number	(min)	P (in)	(cfs)	P (in)	(cfs)	
2			3.34	1.67	3.84	1.93	
10	98	1.6	5.11	2.57	5.86	2.95	
100			8.66	4.37	11.33	5.72	

CURRENT: Proposed Drainage Area - Basin 1 (Combined)									
Storm	Pervious		Imper	vious	Combined				
(year)	Peak Time		Peak	Time	Peak	Time			
	(cfs)	(hr)	(cfs)	(hr)	(cfs)	(hr)			
2	0.68	12.15	1.67	12.10	2.27	12.10			
10	1.29	12.15	2.57	12.10	3.73	12.10			
100	2.55	12.15	4.37	12.10	6.70	12.10			

FU	FUTURE: Proposed Drainage Area - Basin 1 (Combined)								
Storm	Pervious		Impervious		Combined				
(year)	Peak	Time	Peak	Time	Peak	Time			
	(cfs)	(hr)	(cfs)	(hr)	(cfs)	(hr)			
2	0.85	12.15	1.93	12.10	2.68	12.10			
10	1.56	12.15	2.95	12.10	4.36	12.10			
100	3.49	12.13	5.72	12.10	8.93	12.10			

II) Detention Structure Summary - Basin 1:

Outlet Control: 80 LF of 15" HDPE @ 2.8%, Inv 74.00

4" Orifice at Elevation 76.00

(2) 3' Rect. Weirs at Elevation 76.50 4'x4' Overflow Riser at Elevation 77.00

Depth vs. Storage							
Elevation (ft)	Discharge (cfs)	Storage (cf)					
75.50	0.00	0					
76.00	0.00	2,876					
77.00	7.17	8,723					
77.50	9.97	11,695					

<-Elevation of Lowest Orifice = 76.00

66 GLEN AVENUE GLEN ROCK, NEW JERSEY 07452 (201) 670-6688 FAX (201) 670-9788 JOB
SHEET NO.
CALCULATED BY
CHECKED BY
SCALE

21-210: Residential Development - Lawrence, NJ					
3	OF				
MBL	DATE				

DATE

CJB

13 4/16/2025 4/16/2025

CURRENT: Inflow vs. Outflow							
Storm	Inflow		Outflow				
(year)	Peak Flow Time Peak Flow			Time	Peak Elev.		
	(cfs)	(hr)	(cfs)	(hr)	(ft)		
2	2.27	12.10	0.15	13.40	76.29		
10	3.73	12.10	0.90	12.37	76.60		
100	6.70	12.10	4.93	12.13	76.88		

FUTURE: Inflow vs. Outflow							
Storm	Inflow		Outflow				
(year)	Peak Flow	Time	Peak Flow	Time	Peak Elev.		
	(cfs)	(hr)	(cfs)	(hr)	(ft)		
2	2.68	12.10	0.21	13.20	76.41		
10	4.36	12.10	1.77	12.25	76.68		
100	8.93	12.10	7.04	12.13	76.99		

III) Emergency Spillway Design:

Basin 1 contains an emergency spillway designed for the unrouted 100 Year Storm flow.

Use Q =
$$3.2 \times L \times H^{1.5}$$
 to solve for L (weir Length) with H = 0.5 ft Q₁₀₀ = 8.93 cfs 8.93 cfs
8.93 cfs
Use Q = $3.2 \times L \times 0.5^{-1.5}$ L = 7.9 ft Use 8 ft

Check Allowable Discharge Velocity: V = Q / A = 8.93 cfs / (8 ft x 0.5 ft) = 2.23 ft/s (Allowable Discharge Velocity)

The elevation of the emergency spillway is 77.00 with a peak emergency 100-year water elevation of 77.50.

5. PROPOSED RUNOFF - BASIN 2

I) Peak Discharge: Proposed Drainage Area - Basin 2 (as determined by TR-55):

Proposed Drainage Area - Basin 2 (Pervious)							
			Current			Future	
Frequency	Curve	T _c	Rainfall, Peak Discharge		Rainfall,	Peak Discharge	
(year)	Number	(min)	P (in)	(cfs)	P (in)	(cfs)	
2			3.34	0.77	3.84	0.98	
10	79	14.1	5.11	1.55	5.86	1.90	
100			8.66	3.21	11.33	4.46	

Proposed Drainage Area - Basin 2 (Impervious)								
				Current		Future		
Frequency	Curve	T _c	Rainfall,	Peak Discharge	Rainfall,	Peak Discharge		
(year)	Number	(min)	P (in)	(cfs)	P (in)	(cfs)		
2			3.34	1.07	3.84	1.23		
10	98	13.7	5.11	1.65	5.86	1.89		
100			8.66	2.80	11.33	3.67		

66 GLEN AVENUE GLEN ROCK, NEW JERSEY 07452 (201) 670-6688 FAX (201) 670-9788 JOB SHEET NO. CALCULATED BY

CHECKED BY

SCALE

21-210: Residential Development - Lawrence, NJ

4	OF	13
MBL	DATE	4/16/2025
CJB	DATE	4/16/2025

CU	CURRENT: Proposed Drainage Area - Basin 2 (Combined)							
Storm	Pervious		Imper	Impervious		Combined		
(year)	Peak	Time	Peak	Time	Peak	Time		
	(cfs)	(hr)	(cfs)	(hr)	(cfs)	(hr)		
2	0.77	12.20	1.07	12.18	1.84	12.20		
10	1.55	12.20	1.65	12.18	3.20	12.20		
100	3.21	12.20	2.80	12.18	6.00	12.20		

FU	FUTURE: Proposed Drainage Area - Basin 2 (Combined)							
Storm	Pervious		Impervious		Combined			
(year)	Peak	Time	Peak	Time	Peak	Time		
	(cfs)	(hr)	(cfs)	(hr)	(cfs)	(hr)		
2	0.98	12.20	1.23	12.18	2.21	12.20		
10	1.90	12.20	1.89	12.18	3.78	12.20		
100	4.46	12.20	3.67	12.18	8.12	12.20		

II) Detention Structure Summary - Basin 2:

Outlet Control: 11 LF of 15" HDPE @ 2.0%, Inv 71.50

4"x10" Orifice at Elevation 73.33 3' Rect. Weir at Elevation 74.00

4'x4' Overflow Riser at Elevation 74.50

Depth vs. Storage							
Elevation Discharge Storage							
(ft)	(cfs)	(cf)					
73.00	0.00	0					
74.00	0.95	7,650					
74.50	4.73	12,194					

<-Elevation of Lowest Orifice = 73.33

	CURRENT: Inflow vs. Outflow								
Storm	Inflow	Outflow							
(year)	Peak Flow	Time	Peak Flow	Time	Peak Elev.				
	(cfs)	(hr)	(cfs)	(hr)	(ft)				
2	1.84	12.20	0.28	12.90	73.54				
10	3.20	12.20	0.79	12.62	73.84				
100	6.00	12.20	2.70	12.42	74.29				

	FUTURE: Inflow vs. Outflow										
Storm	Inflow Outflow										
(year)	Peak Flow	Time	Peak Flow	Time	Peak Elev.						
	(cfs)	(hr)	(cfs)	(hr)	(ft)						
2	2.21	12.20	0.44	12.72	73.62						
10	3.78	12.20	0.93	12.62	73.98						
100	8.12	12.20	4.68	12.37	74.50						

66 GLEN AVENUE GLEN ROCK, NEW JERSEY 07452 (201) 670-6688 FAX (201) 670-9788 JOB
SHEET NO.
CALCULATED BY
CHECKED BY

SCALE

21-210: Residential Development - Lawrence, NJ

5	OF	13
MBL	DATE	4/16/2025
CJB	DATE	4/16/2025

III) Emergency Spillway Design:

Basin 2 contains an emergency spillway designed for the unrouted 100 Year Storm flow.

Use Q =
$$3.2 \times L \times H^{1.5}$$
 to solve for L (weir Length) with H = 0.5 ft $Q_{100} = 8.12$ cfs 8.12 cfs $0.5 \times L = 7.2$ ft Use 8 ft

Check Allowable Discharge Velocity:
$$V = 2.4 \text{ ft/s}$$
 (Allowable Discharge Velocity) $V = Q / A = 8.12 \text{ cfs} / (8 \text{ ft x } 0.5 \text{ ft}) = 2.03 \text{ ft/s} < 2.4 \text{ ft/s}$ **OK**

The elevation of the emergency spillway is 74.50 with a peak emergency 100-year water elevation of 75.00.

6. PROPOSED RUNOFF - BASIN 3

I) Peak Discharge: Proposed Drainage Area - Basin 3 (as determined by TR-55):

	Proposed Drainage Area - Basin 3 (Pervious)									
				Current		Future				
Frequency	Curve	T _c	Rainfall, Peak Discharge Rainfall, Peak Discha							
(year)	Number	(min)	P (in)	(cfs)	P (in)	(cfs)				
2			3.34	1.77	3.84	2.21				
10	83	19.0	5.11	3.34	5.86	4.02				
100			8.66	6.55	11.33	8.95				

	Proposed Drainage Area - Basin 3 (Impervious)									
				Current		Future				
Frequency	Curve	T _c	Rainfall,	Peak Discharge	Rainfall,	Peak Discharge				
(year)	Number	(min)	P (in)	·		(cfs)				
2			3.34	7.10	3.84	8.19				
10	98	3.9	5.11	10.93	5.86	12.55				
100			8.66	18.59	11.33	24.34				

	CURRENT: Proposed Drainage Area - Basin 3 (Combined)											
Storm	torm Pervious Impervious Basin 1 Outflow		Pervious Impervious Basin 1 Outflow F		Storm Pervious		Basin 2	Outflow	Com	bined		
(year)	Peak	Time	Peak	Time	Peak	Time	Peak	Time	Peak	Time		
	(cfs)	(hr)	(cfs)	(hr)	(cfs)	(hr)	(cfs)	(hr)	(cfs)	(hr)		
2	1.77	12.25	7.10	12.10	0.15	13.40	0.28	12.90	8.27	12.10		
10	3.34	12.25	10.93	12.10	0.90	12.37	0.79	12.62	13.67	12.10		
100	6.55	12.25	18.59	12.10	4.93	12.13	2.70	12.42	28.58	12.12		

	FUTURE: Proposed Drainage Area - Basin 3 (Combined)											
Storm	Storm Pervious			vious	Basin 1	Outflow	Basin 2	Outflow	Com	bined		
(year)	Peak	Time	Peak	Time	Peak	Time	Peak	Time	Peak	Time		
	(cfs)	(hr)	(cfs)	(hr)	(cfs)	(hr)	(cfs)	(hr)	(cfs)	(hr)		
2	2.21	12.25	8.19	12.10	0.21	13.20	0.44	12.72	9.73	12.10		
10	4.02	12.25	12.55	12.10	1.77	12.25	0.93	12.62	16.38	12.12		
100	8.95	12.25	24.34	12.10	7.04	12.13	4.68	12.37	38.98	12.12		

66 GLEN AVENUE GLEN ROCK, NEW JERSEY 07452 (201) 670-6688 FAX (201) 670-9788 JOB
SHEET NO.
CALCULATED BY
CHECKED BY

SCALE

21-210: Residential Development - Lawrence, NJ

6	OF	13
MBL	DATE	4/16/2025
CJB	DATE	4/16/2025

II) Detention Structure Summary - Basin 3:

Outlet Control: 37 LF of 24" RCP @ 3.0%, Inv 66.00

3" Orifice at Elevation 67.75

(3) 5"x32" Orifices at Elevation 69.00 3' Rect. Weir at Elevation 70.00

4'x4' Overflow Riser at Elevation 70.50

	Depth vs. Storage									
Elevation (ft)	Discharge (cfs)	Storage (cf)								
67.00	0.00	0								
68.00	0.08	15,721								
69.00	0.25	31,649								
70.00	14.62	47,783								
71.00	29.33	64,120								

<-Elevation of Lowest Orifice = 67.75

	CURRENT: Inflow vs. Outflow										
Storm	m Inflow Outflow										
(year)	Peak Flow	Peak Flow Time			Peak Elev.						
	(cfs)	(hr)	(cfs)	(hr)	(ft)						
2	8.27	12.10	0.22	20.90	68.74						
10	13.67	12.10	2.51	13.07	69.19						
100	28.58	12.12	13.80	12.38	69.91						

	FUTURE: Inflow vs. Outflow										
Storm	orm Inflow Outflow										
(year)	Peak Flow	Peak Flow Time Peak Flow			Peak Elev.						
	(cfs)	(hr)	(cfs)	(hr)	(ft)						
2	9.73	12.10	0.46	16.78	69.02						
10	16.38	12.12	4.75	12.60	69.30						
100	38.98	12.12	21.73	12.35	70.49						

III) Emergency Spillway Design:

Basin 3 contains an emergency spillway designed for the unrouted 100 Year Storm flow.

Use Q =
$$3.2 \times L \times H^{1.5}$$
 to solve for L (weir Length) with H = 0.5 ft Q₁₀₀ = 38.98 cfs 38.98 cfs = $3.2 \times L \times 0.5^{\circ}1.5$ L = 34.5 ft Use 35 ft

Check Allowable Discharge Velocity: V = Q / A = 38.98 cfs / (35 ft x 0.5 ft) = 2.23 ft/s (Allowable Discharge Velocity)

The elevation of the emergency spillway is 70.50 with a peak emergency 100-year water elevation of 71.00.

66 GLEN AVENUE GLEN ROCK, NEW JERSEY 07452 (201) 670-6688 FAX (201) 670-9788 JOB
SHEET NO.
CALCULATED BY
CHECKED BY
SCALE

21-210: Residential Development - Lawrence, NJ							
7	OF						
MBL	DATE						
CJB	DATE						

13 4/16/2025 4/16/2025

7. PROPOSED RUNOFF - BYPASS

I) Peak Discharge: Proposed Drainage Area - Bypass (as determined by TR-55):

	Proposed Drainage Area - Bypass (Pervious)									
				Current		Future				
Frequency	Curve	T _c	Rainfall,	Peak Discharge	Rainfall,	Peak Discharge				
(year)	Number	(min)	P (in)	P (in) (cfs)		(cfs)				
2			3.34	0.73	3.84	0.91				
10	82	11.8	5.11	1.39	5.86	1.68				
100			8.66	2.75	11.33	3.77				

Proposed Drainage Area - Bypass (Impervious)								
				Current		Future		
Frequency	Curve	T _c	Rainfall,	Peak Discharge	Rainfall,	Peak Discharge		
(year)	Number	(min)	P (in)	(cfs)	P (in)	(cfs)		
2			3.34	0.16	3.84	0.18		
10	98	6.5	5.11	0.25	5.86	0.28		
100			8.66	0.42	11.33	0.55		

CU	CURRENT: Proposed Drainage Area - Bypass (Combined)									
Storm	Pervious		Imper	Impervious		Combined				
(year)	Peak	Peak Time		Time	Peak	Time				
	(cfs)	(hr)	(cfs)	(hr)	(cfs)	(hr)				
2	0.73	12.18	0.16	12.12	0.85	12.17				
10	1.39	12.18	0.25	12.12	1.57	12.17				
100	2.75	12.18	0.42	12.12	3.07	12.17				

Fl	FUTURE: Proposed Drainage Area - Bypass (Combined)									
Storm	Pervious		Imper	Impervious		Combined				
(year)	(year) Peak Time		Peak	Time	Peak	Time				
	(cfs)	(hr)	(cfs)	(hr)	(cfs)	(hr)				
2	0.91	12.18	0.18	12.12	1.05	12.17				
10	1.68	12.18	0.28	12.12	1.89	12.17				
100	3.77	12.17	0.55	12.12	4.20	12.15				

8. PROPOSED RUNOFF - COMBINED (TOTAL)

	CURRENT: Proposed Drainage Area									
Storm	Basin 3 Route		Вур	Bypass		Combined				
(year)	Peak Time Peak		Time	Peak	Time					
	(cfs)	(hr)	(cfs)	(hr)	(cfs)	(hr)				
2	0.22	20.90	0.85	12.17	0.87	12.17				
10	2.51	13.07	1.57	12.17	2.70	13.03				
100	13.80	12.38	3.07	12.17	15.49	12.27				

	FUTURE: Proposed Drainage Area									
Storm	Basin 3 Route		Bypass		Combined					
(year)	Peak Time Peak Time		Time	Peak	Time					
	(cfs)	(hr)	(cfs)	(hr)	(cfs)	(hr)				
2	0.46	16.78	1.05	12.17	1.14	12.17				
10	4.75	12.60	1.89	12.17	5.20	12.58				
100	21.73	12.35	4.20	12.15	24.32	12.27				

66 GLEN AVENUE GLEN ROCK, NEW JERSEY 07452 (201) 670-6688 FAX (201) 670-9788 JOB SHEET NO. CALCULATED BY CHECKED BY SCALE

21-210: Residential Development - Lawrence, NJ							
8	OF						
MBL	DATE						
CJB	DATE						

13
4/16/2025
4/16/2025

9. EXISTING VS. PROPOSED RUNOFF

	CURRENT: Proposed Drainage Area								
Frequency (year)	Existing (cfs)	Change (cfs)	% Exist.						
2	1.79	0.87	0.92	48.7%					
10	6.76	2.70	4.06	39.9%					
100	19.88	15.49	4.39	77.9%					

FUTURE: Proposed Drainage Area								
Frequency								
(year)	(cfs)	(cfs)	(cfs)					
2	3.02	1.14	1.88	37.7%				
10	9.27	5.20	4.07	56.1%				
100	31.01	24.32	6.69	78.4%				

The calculations indicate that the proposed site redevelopment with infiltration decreases the surface runoff for the three deisgn storms. As per N.J.A.C. 7:8-5.6(b)3, the required rate reductions have been met for both the Current and Future percipitation depths.

10. WATER QUALITY DESIGN

The above ground detention basin is designed with a sand filter to treat the pavement area directed into the drainage system for the Stormwater Quality Design Storm. As per N.J.A.C. 7:8-5.6, the BMP flow rate is determined using NRCS methodology based on the following criteria:

T_d (Storm Duration) = 2 hours

I = 0.625 inches/hr for Stormwater Quality Design Storm (See Table 5-1)

I) Area of Analysis:

Treated drainage areas are equal to the infilltration basin areas.

Drainage Area	Total	Pervious (acres)		Impervious
	(acres)	HSG B	HSG C	(acres)
Prop - Treated 1	0.809	0.196	0.155	0.458
Prop - Treated 2	0.925	0.535	0.000	0.390
Prop - Treated 3	3.027	0.456	0.706	1.865

II) Treated Area 1 (Prop - Basin 1) Routed Through Basin 1:

	Proposed Drainage Area - Treated 1										
Pervious Impervious Combined											
Frequency (year)	Rainfall, P (in)	Peak (cfs)	Volume (cf)	Peak (cfs)	Volume (cf)	Peak (cfs)	Volume (cf)				
WQ	1.25	0.20	278	1.32	1,613	1.43	1,891				

Inflow vs. Outflow							
Storm	Storm Inflow Outflow						
(year)	Peak Flow	Time	Peak Flow	Time	Peak Elev.		
	(cfs)	(hr)	(cfs)	(hr)	(ft)		
WQ	1.43	1.08	0.00	n/a	75.83		

Entire Water Quality Storm Volume is contained within the basin below the lowest orifice.

66 GLEN AVENUE GLEN ROCK, NEW JERSEY 07452 (201) 670-6688 FAX (201) 670-9788 JOB SHEET NO. CALCULATED BY CHECKED BY

SCALE

9 OF MBL DATE CJB DATE

21-210: Residential Development - Lawrence, NJ

13 4/16/2025 4/16/2025

III) Treated Area 2 (Prop - Basin 2) Routed Through Basin 2:

Proposed Drainage Area - Treated 2							
Pervious Impervious Combined					ined		
Frequency	,	Peak	Volume	Peak	Volume	Peak	Volume
(year)	P (in)	(cfs)	(cf)	(cfs)	(cf)	(cfs)	(cf)
WQ	1.25	0.16	297	0.91	1,465	1.04	1,761

Inflow vs. Outflow					
Storm	Storm Inflow Outflow				
(year)	Peak Flow	Time	Peak Flow	Time	Peak Elev.
	(cfs)	(hr)	(cfs)	(hr)	(ft)
WQ	1.04	1.18	0.00	n/a	73.23

Entire Water Quality Storm Volume is contained within the basin below the lowest orifice.

IV) Treated Area 3 (Prop - Basin 3) Routed Through Basin 3:

Proposed Drainage Area - Treated 3									
Pervious Impervious B				Basins	1 & 2	Com	bined		
Frequency	Rainfall,	Peak	Volume	Peak	Volume	Peak	Volume	Peak	Volume
(year)	P (in)	(cfs)	(cf)	(cfs)	(cf)	(cfs)	(cf)	(cfs)	(cf)
WQ	1.25	0.51	1,031	5.69	7,004	0.00	0	5.81	8,035

Inflow vs. Outflow						
Storm	Storm Inflow Outflow					
(year)	Peak Flow	Time	Peak Flow	Time	Peak Elev.	
	(cfs)	(hr)	(cfs)	(hr)	(ft)	
WQ	5.81	1.08	0.00	n/a	67.51	

Entire Water Quality Storm Volume is contained within the basin below the lowest orifice.

11. STORMWATER RECHARGE REQUIREMENT

As per the NJDEP, the required amount of groundwater recharge is determined by the Annual Groundwater Recharge Analysis worksheet (see attached). According to page 1 of the worksheet, there is an annual recharge deficit for the post-development condition of 47,406 (Vdef) for the portion of the site to be disturbed (5.229 acres). Basin 1 collects a large amount of the impervious area from the pavement. The amount of impervious area collected is 19,950 sf (Aimp) and provides the Annual BMP Recharge Volume (Vdef) at a calculated BMP effective depth (dBMP) of 5.0 inches. Since the provided BMP effective depth in the basin of 6 inches (below lowest orifice) is greater than the calculated depth, the stormwater recharge requirement is satisfied. This calculation omits the additional recharge provided by the other infiltration basins utilized on the property. See the attached Soil Maps for the locations of the referenced soil types.

66 GLEN AVENUE GLEN ROCK, NEW JERSEY 07452 (201) 670-6688 FAX (201) 670-9788

JOB SHEET NO. CALCULATED BY CHECKED BY

10	OF
MBL	DATE
СЈВ	DATE

21-210: Residential Development - Lawrence, NJ						
10	OF	13				
MBL	DATE	4/16/2025				
CJB	DATE	4/16/2025				

12. STORM SEWER ANALYSIS TABLE

The following table lists the areas collected by the proposed storm sewer. See the attached Storm Sewer Design Calculations for pipe capacity calculations.

SCALE

0.99 for impervious areas Use c =

0.25 for pervious areas (HSG B)

0.51 for pervious areas (HSG C)

Inlet	Imperv.	Perv. B	Perv. C	Total	Weighted
	(Acres)	(Acres)	(Acres)	(Acres)	С
DI#1	0.095	0.020	0.003	0.118	0.85
DI#2	0.000	0.187	0.000	0.187	0.25
DI#3	0.192	0.015	0.000	0.207	0.94
DI#4	0.000	0.083	0.000	0.083	0.25
DI#5	0.109	0.037	0.000	0.146	0.80
DI#6	0.093	0.013	0.011	0.117	0.86
DI#7	0.450	0.061	0.029	0.540	0.88
DI#8	0.038	0.005	0.034	0.077	0.73
DI#9	0.356	0.000	0.046	0.402	0.94
DI#10	0.097	0.016	0.067	0.180	0.75
DI#11	0.082	0.000	0.006	0.088	0.96
TD#3	0.039	0.005	0.053	0.097	0.69
TD#2	0.059	0.001	0.011	0.071	0.91
DMH#2	0.028	0.053	0.022	0.103	0.51

13. PREFORMED SCOUR HOLE DESIGN

Scour holes are designed for the 25-year storm. A scour hole is proposed for each discharge point into the two above-ground basins.

Scour Hole #1:

 $Q_{25} =$ 1.27 cfs (See Storm Sewer Design Calculations)

 $D_0 =$ 15 in

 $T_{w} = 0.2D_{o} =$ 0.25 ft

Length of Hole Bottom (L) = $3 \times D_0 =$ 3.75 ft

 $2 \times W_o =$ Width of Hole Bottom (W) = 2.50 ft

 $(0.0125 / 0.2D_0) \times (Q / W_0)^{4/3} =$ Median Stone Dia. $(d_{50}) =$ 0.05 ft (Use 6" = 0.5 ft)

66 GLEN AVENUE GLEN ROCK, NEW JERSEY 07452 (201) 670-6688 FAX (201) 670-9788 JOB

SCALE

SHEET NO.

CALCULATED BY

CHECKED BY

21-210: Residential Development - Lawrence, NJ

11	OF
MBL	DATE
CJB	DATE

13 4/16/2025 4/16/2025

Scour Hole #2:

A = 0.282 ac

c = 0.98 for impervious areas

 $I_{25} = 7.28 \text{ in/hr} (T_c = 5 \text{ min.})$

 $Q_{25} = 0.98$ x 7.28 x 0.282 = **2.01 cfs**

 $D_o = 10 \text{ in}$

 $T_w = 0.2D_0 = 0.17 \text{ ft}$

Length of Hole Bottom (L) = $3 \times D_0 =$ 2.50 ft

Width of Hole Bottom (W) = $2 \times W_o = 1.67 \text{ ft}$

Median Stone Dia. $(d_{50}) = (0.0125 / 0.2D_0) \times (Q / W_0)^{4/3} = 0.09 \text{ ft (Use 4" = 0.33 ft)}$

Scour Hole #3:

A = 0.299 ac

c = 0.98 for impervious areas

 $I_{25} = 7.28 \text{ in/hr} (T_c = 5 \text{ min.})$

 $Q_{25} = 0.98$ x 7.28 x 0.299 = **2.13 cfs**

 $D_0 = 10 \text{ in}$

 $T_w = 0.2D_0 = 0.17 \text{ ft}$

Length of Hole Bottom (L) = $3 \times D_0 = 2.50 \text{ ft}$

Width of Hole Bottom (W) = $2 \times W_0 = 1.67 \text{ ft}$

Median Stone Dia. $(d_{50}) = (0.0125 / 0.2D_o) \times (Q / W_o)^{4/3} = 0.09 \text{ ft (Use 4" = 0.33 ft)}$

Scour Hole #4:

 Q_{25} = 12.34 cfs (See Storm Sewer Design Calculations)

 $D_0 = 18 \text{ in}$

 $T_w = 0.2D_0 = 0.30 \text{ ft}$

Length of Hole Bottom (L) = $3 \times D_0 = 4.50 \text{ ft}$

Width of Hole Bottom (W) = $2 \times W_0 = 3.00 \text{ ft}$

Median Stone Dia. $(d_{50}) = (0.0125 / 0.2D_0) \times (Q / W_0)^{4/3} = 0.69 \text{ ft (Use 9" = 0.75 ft)}$

Scour Hole #5:

 Q_{25} = 0.35 cfs (See Storm Sewer Design Calculations)

 $D_0 = 6 \text{ in}$

 $T_w = 0.2D_o = 0.10 \text{ ft}$

Length of Hole Bottom (L) = $3 \times D_0 = 1.50 \text{ ft}$ Width of Hole Bottom (W) = $2 \times W_0 = 1.00 \text{ ft}$

Median Stone Dia. $(d_{50}) = (0.0125 / 0.2D_0) \times (Q / W_0)^{4/3} = 0.08 \text{ ft (Use 4" = 0.33 ft)}$

66 GLEN AVENUE GLEN ROCK, NEW JERSEY 07452 (201) 670-6688 FAX (201) 670-9788

JOB SHEET NO.

SCALE

CALCULATED BY

CHECKED BY

21-210: Residential Development - Lawrence, NJ

		•
12	OF	13
MBL	DATE	4/16/2025
 CJB	DATE	4/16/2025

Scour Hole #6:

A = 0.370 ac

c = 0.98 for impervious areas I_{25} = 7.28 in/hr (T_c = 5 min.)

 $Q_{25} = 0.98$ x 7.28 x 0.370 = **2.64 cfs**

 $D_0 = 10 \text{ in}$

 $T_w = 0.2D_o = 0.17 \text{ ft}$

Length of Hole Bottom (L) = $3 \times D_0 = 2.50 \text{ ft}$ Width of Hole Bottom (W) = $2 \times W_0 = 1.67 \text{ ft}$

Median Stone Dia. $(d_{50}) = (0.0125 / 0.2D_0) \times (Q / W_0)^{4/3} = 0.09 \text{ ft (Use 4" = 0.33 ft)}$

14. GROUNDWATER MOUNDING ANALYSIS

Basin #1:

The soils report was prepared by Wham Engineering Services, Inc. on June 10, 2024. A percolation rate of 10 in/hr is used at TP-7.

Time to Drain 100 Year Volume:

Test Infiltration Rate: 18.5 in/hr

Design Infiltration Rate (1/2 Test Rate) 9.25 in/hr = 0.771 ft/hr

Volume Below Lowest Orifice: 2,876 cf Area of Infiltration 5,720 sf

Time to Drain: 2,876 cf / (5720 sf x 0.771 ft/hr)

= 0.65 hours

Elevation of Groundwater: 70 (16 ft down from existing grade elevation of TP-7)

Bottom of Basin Elevation: 75.50

Groundwater Mounding Height at Center: 3.251 ft (From Groundwater Mounding Calculator)
Elevaton of Groundwater Mounding at Center: 3.251 ft + 70.0 = 73.25 (Below basin bottom)

Since groundwater mounding at center is lower than bottom of basin, analysis is ok.

Basin #2:

The soils report was prepared by Wham Engineering Services, Inc. on March 29, 2023. A percolation rate of 10 in/hr is used at TP-2. SHWT is based on TP-3.

Time to Drain 100 Year Volume:

Test Infiltration Rate: 10 in/hr

Design Infiltration Rate (1/2 Test Rate) 5 in/hr = 0.417 ft/hr

Volume Below Lowest Orifice: 2,339 cf Area of Infiltration 6,711 sf

Time to Drain: 2,339 cf / (6711 sf x 0.417 ft/hr)

= 0.84 hours

66 GLEN AVENUE GLEN ROCK, NEW JERSEY 07452 (201) 670-6688 FAX (201) 670-9788

JOB SHEET NO. **CALCULATED BY**

CHECKED BY

SCALE

21-210: Residential Development - Lawrence, NJ

13	OF	13
MBL	DATE	4/16/2025
CJB	DATE	4/16/2025

Elevation of Groundwater: 71 (10 ft down from existing grade elevation of TP-3)

Bottom of Basin Elevation: 73.00

Groundwater Mounding Height at Center: 2.333 ft (From Groundwater Mounding Calculator) Elevaton of Groundwater Mounding at Center: 2.333 ft + 71.0 = 73.33(Above basin bottom)

Since groundwater mounding at center is higher than bottom of basin, additional analysis is required.

Trial Design Infiltration Rate / Factor: 0.350 in/hr =0.029 ft/hr

Time to Drain x Factor: $2,339 \text{ cf} / (6711 \text{ sf } \times 0.029 \text{ ft/hr}) =$ 11.95 hours 1.999 ft (From Groundwater Mounding Calculator) Groundwater Mounding Height at Center:

Elevaton of Groundwater Mounding at Center: 1.999 ft + 71 = 73.00(Basin bottom)

Basin #3:

The soils report was prepared by Wham Engineering Services, Inc. on March 29, 2023. A percolation rate of 23 in/hr is used at TP-1A. SHWT is based on TP-1.

Time to Drain 100 Year Volume:

Test Infiltration Rate: 23 in/hr

Design Infiltration Rate (1/2 Test Rate) 11.5 in/hr =0.958 ft/hr

Volume Below Lowest Orifice: 11,771 cf Area of Infiltration 15.617 sf

Time to Drain: 11,771 cf / (15617 sf x 0.958 ft/hr)

0.79 hours

Elevation of Groundwater: 64.5 (4 ft down from existing grade elevation of TP-1)

Bottom of Basin Elevation: 67.00

Groundwater Mounding Height at Center: 5.040 ft (From Groundwater Mounding Calculator) Elevaton of Groundwater Mounding at Center: 5.040 ft + 64.5 = 69.54(Above basin bottom)

Since groundwater mounding at center is higher than bottom of basin, additional analysis is required.

Trial Design Infiltration Rate / Factor: 0.244 in/hr =0.020 ft/hr

Time to Drain x Factor: $11,771 \text{ cf} / (15617 \text{ sf } \times 0.020 \text{ ft/hr}) =$ 37.07 hours Groundwater Mounding Height at Center: 2.500 ft (From Groundwater Mounding Calculator)

2.500 ft + 64.5 = 67.00Elevaton of Groundwater Mounding at Center: (Basin bottom) New Jersey Groundwater Recharge Spreadsheet Version 2.0 November 2003

Annual Groundwater Recharge Analysis (based on GSR-32)

Select Township \downarrow	Average Annual P (in)	Climatic Factor
IERCER CO., LAWRENCE TWP	44.9	1.43

Project Name: 21-210

Description: Lawrence, NJ

Analysis Date: 04/16/25

	Pre-Developed Conditions						
Land Segment	Area (acres)	TR-55 Land Cover	Soil	Annual Recharge (in)	Annual Recharge (cu.ft)		
1	0.734	Woods	Pits, Muck	0.0			
2	0.898	Woods	Matapeake	13.0	42,519		
3	0.938	Woods	Matapeake	13.0	44,413		
4	0.365	Woods	Portsmouth	0.0	•		
5	0.063	Woods	Sassafras	13.3	3,036		
6	0.295	Woods	Othello	0.0	•		
7	1.936	Woods	Fallsington	0.0	•		
8	0						
9	0						
10	0						
11	0						
12	0						
13	0						
14	0						
15	0						
Total =	5.2			Total Annual Recharge (in)	Total Annual Recharge (cu-ft)		
				4.7	89,967		

		Tananjere - area			
		Post-Develope	d Conditions		
Land Segment	Area (acres)	TR-55 Land Cover	Soil	Annual Recharge (in)	Annual Recharge (cu.ft)
1	0.404	Open space	Pits, Muck	0.0	-
2	0.46	Open space	Matapeake	12.9	21,577
3	0.385	Open space	Matapeake	12.9	18,059
4	0.175	Open space	Portsmouth	0.0	•
5	0.061	Open space	Sassafras	13.2	2,926
6	0.151	Open space	Othello	0.0	
7	0.836	Open space	Fallsington	0.0	-
8	2.757	Impervious areas	Fallsington	0.0	-
9	0				
10	0				
11	0				
12	0				
13	0				
14	0				_
15	0				
Total =	5.2			Total Annual Recharge (in)	Total Annual Recharge (cu.ft)
Annual	Recharg	ge Requirements Calculat	ion ↓	2.2	42,561
		_		Total	

Impervious

Area (sq.ft)

(cubic feet)

120,095

100%

47,406

Procedure to fill the Pre-Development and Post-Development Conditions Tables

For each land segment, first enter the area, then select TR-55 Land Cover, then select Soil. Start from the top of the table and proceed downward. Don't leave blank rows (with A=0) in between your segment entries. Rows with A=0 will not be displayed or used in calculations. For impervious areas outside of standard lots select "Impervious Areas" as the Land Cover. Soil type for impervious areas are only required if an infiltration facility will be built within these areas.

Recharge Efficiency Parameters Calculations (area averages)

% of Pre-Developed Annual Recharge to Preserve =

Post-Development Annual Recharge Deficit=

RWC= 1.33 (in) DRWC= 0.83 (in) EDRWC= 0.24 (in)

Project Name		Description	<u>on</u>		Analysis	Date	BMP or L	ID Type			
21-210		Lawrence	, NJ		04/16/25 Infiltration Basi			sin 1			
Recharge BMP Input Pa	rameters			Root Zone Water capacity Calculated Parameters			Recharge Design Parameters				
<u>Parameter</u>	Symbol	<u>Value</u>	<u>Unit</u>	<u>Parameter</u>	Symbol	<u>Value</u>	<u>Unit</u>	<u>Parameter</u>	<u>Symbol</u>	<u>Value</u>	<u>Unit</u>
BMP Area	ABMP	5720.0	sq.ft	Empty Portion of RWC under Post-D Natural Recharge	ERWC	0.38	in	Inches of Runoff to capture	Qdesign	1.46	in
BMP Effective Depth, this is the design variable	dBMP	5.0	in	ERWC Modified to consider dEXC	EDRWC	0.24	in	Inches of Rainfall to capture	Pdesign	1.68	in
Upper level of the BMP surface (negative if above ground)	dBMPu	12.0	in	Empty Portion of RWC under Infilt. BMP	RERWC	0.19	in	Recharge Provided Avg. over Imp. Area		28.5	in
Depth of lower surface of BMP, must be>=dBMPu	dEXC	18.0	in					Runoff Captured Avg. over imp. Area		32.7	in
Post-development Land Segment Location of BMP, Input Zero if Location is distributed or undetermined	SegBMP	0	unitless								
				BMP Calculated Size	Parameter	S		CALCULATION CI	HECK MES	SSAGES	
				ABMP/Aimp	Aratio	0.29	unitless	Volume Balance->			
			1	BMP Volume	VBMP	2,369	cu.ft	dBMP Check>			
Parameters from Annua	l Recharge	e Worksheet		System Performance	Calculated	Parameters	1	dEXC Check>	OK		
Post-D Deficit Recharge (or desired recharge volume)	Vdef	47,406	cu.ft	Annual BMP Recharge Volume		47,406	cu.ft	BMP Location>	Location is	selected as	distrib
Post-D Impervious Area (or target Impervious Area)	Aimp	19,950	sq.ft	Avg BMP Recharge Efficiency		87.2%	Represents % Infiltration Recharged	OTHER NOTES			
Root Zone Water Capacity	RWC	1.33	in	%Rainfall became Runoff		77.7%	%	Pdesign is accurate only after	r BMP dimension	ns are updated	to make r
RWC Modified to consider dEXC	DRWC	0.83	in	%Runoff Infiltrated		93.7%	%	of BMP infiltration prior to fillir	ng and the area o	occupied by BM	1P are igr
Climatic Factor	C-factor	1.43	no units	%Runoff Recharged		13.6%	%	sensetive to dBMP, make sur	e dBMP selected	d is small enou	gh for BM
Average Annual P	Pavg	44.9	in	%Rainfall Recharged		10.5%	%	Segment Location of BMP if y	ou select "imper	vious areas" R	WC will b
Recharge Requirement over Imp. Area	dr	4.7	in					the soil type and a shallow ro	ot zone for this I	and Cover allo	wing cons

How to solve for different recharge volumes: By default the spreadsheet assigns the values of total deficit recharge volume "Vdef" and total proposed impervious area "Aimp" from the "Annual Recharge" sheet to "Vdef"

and "Aimp" on this page. This allows solution for a single BMP to handle the entire recharge requirement assuming the runoff from entire impervious area is available to the BMP.

To solve for a smaller BMP or a LID-IMP to recharge only part of the recharge requirement, set Vdef to your target value and Aimp to impervious area directly connected to your infiltration facility and then solve for ABMP or dBMP. To go back to the default configuration clik the "Default Vdef & Aimp" button.

STORM SEWER DESIGN CALCULATIONS

PROJECT: Townhouse Development - Lawrence, NJ

PROJECT No: 21-210

STORM EVENT: 25 Year

NOAA Precipitation Frequency Table								
Duration	(min	5	10	15	30	60	120	
Intensity	(in/hr	7.28	5.80	4.90	3.63	2.42	1.51	

BY:	MBL
CHK'D:	CJB
DATE:	4/16/25

Draii	nage	Area	Runoff				Inlet				Pipe					Pi	pe Desiç	gn		
Stru	cture	Α	Coef.		Sum	Tc	i	Q	Тс	Tt	T total	i	Q	Dia	Manning's	Length		Q full	V full	V design
From	То	Acres	С	CxA	CA	min	in/hr	cfs	min	min	min	in/hr	cfs	in	n	ft	%	cfs	fps	fps
DI#1	DMH#1	0.12	0.85	0.10	0.10	10	5.80	0.58	10	-	10.00	5.80	0.58	15	0.012	39	1.00	7.0	5.7	3.6
TD#3	DMH#1	0.10	0.69	0.07	0.07	10	5.80	0.41	10	-	10.00	5.80	0.41	6	0.011	6	2.00	0.9	4.6	4.6
DMH#1	DMH#2				0.17	10	5.80		10	0.02	10.02	5.80	0.99	15	0.012	61	1.00	7.0	5.7	4.1
DMH#2	PSH#1	0.10	0.51	0.05	0.22	10	5.80	0.29	10.02	0.25	10.27	5.75	1.27	15	0.012	40	1.00	7.0	5.7	4.5
OCS#1	DI#2							2.17					2.17	15	0.012	80	2.80	11.7	9.5	7.3
DI#2	DI#3	0.19	0.25	0.05	0.05	10	5.80	0.29	10	-	10.00	5.80	2.46	15	0.012	53	1.30	8.0	6.5	5.7
DI#3	DMH#3	0.21	0.94	0.19	0.24	10	5.80	1.10	10	0.15	10.15	5.77	3.55	15	0.012	136	1.50	8.6	7.0	6.8
OCS#2	DMH#3					10	5.80	1.05	10	-	10.00	5.80	1.05	15	0.012	11	2.00	9.9	8.1	5.3
DMH#3	DMH#4				0.24	10	5.80		10.15	0.33	10.48	5.71	4.59	15	0.012	96	1.20	7.7	6.3	6.6
DI#4	DI#5	0.08	0.25	0.02	0.02	10	5.80	0.12	10	-	10.00	5.80	0.12	15	0.012	54	1.00	7.0	5.7	2.5
DI#5	DMH#4	0.15	0.80	0.12	0.14	10	5.80	0.70	10	0.36	10.36	5.74	0.80	15	0.012	15	2.00	9.9	8.1	4.9
DI#7	DI#8	0.54	0.88	0.48	0.48	10	5.80	2.78	10	-	10.00	5.80	2.78	15	0.012	60	1.80	9.4	7.7	6.7
DI#8	DI#11	0.08	0.73	0.06	0.54	10	5.80	0.35	10	0.15	10.15	5.77	3.12	15	0.012	151	3.60	13.3	10.8	9.2
DI#9	DI#10	0.40	0.94	0.38	0.38	10	5.80	2.20	10	-	10.00	5.80	2.20	15	0.012	21	1.00	7.0	5.7	5.1
DI#10	DI#11	0.18	0.75	0.14	0.52	10	5.80	0.81	10	0.07	10.07	5.79	3.01	15	0.012	23	1.00	7.0	5.7	5.6
DI#11	DI#6	0.09	0.96	0.08	1.14	10	5.80	0.46	10.15	0.27	10.42	5.72	6.52	15	0.012	194	1.00	7.0	5.7	6.5
DI#6	DMH#4	0.12	0.86	0.10	1.24				10.42	0.5	10.92	5.63	6.98	18	0.012	9	1.00	11.4	6.5	6.8
DMH#4	FES#1				1.62	10	5.80		10.92	0.02	10.94	5.63	12.34	18	0.012	48	1.20	12.5	7.1	8.1
TD#2	PSH#5	0.07	0.91	0.06	0.06	10	5.80	0.35	10	-	10.00	5.80	0.35	6	0.011	42	0.60	0.5	2.5	2.8
OCS#3	EX IN							6.16					6.16	24	0.013	19	5.00	50.6	16.1	11.3
										•	•									

TABLE 7.1

 $\overline{\mathbf{D}}$

0.88

0.67

0.84

0.65

0.61

0.79

0.59

0.65

0.74

0.96

0.92

0.900.80

0.78

0.76 0.74 0.99

0.99

0.88

0.84

TYPICAL RUNOFF COEFFICIENTS (C VALUES) FOR 100 YEAR FREQUENCY STORM

	Hydrologic Soil Group					
Land Use Description	<u>A</u>	<u>B</u>	<u>Ĉ</u>			
Cultivated land:						
without conservation treatment	0.49	0.67	0.81			
with conservation treatment	0.27	0.43	0.61			
Pasture or range land:						
poor condition	0.38	0.63	0.78			
good condition	NA	0.25	0.51			
Meadow: good condition	NA	NA	0.44			
Wood or forest land:						
thin stand, poor cover, no mulch	NA	NA	0.59			
good cover	NA	NA	0.45			
Open spaces, lawns, parks, golf courses, cemeteries:						
good condition, grass cover on 75% or more of area	NA	0.25	0.51			
fair condition, grass cover on 50-75% of area	NA	0.45	0.63			
Commercial and business areas (85% impervious)	0.84	0.90	0.93			

Average lot	Average			
size	impervious			
⅓ acre	65%	0.59	0.76	
¼ acre	38%	0.25	0.55	
½ acre	30%	NA	0.49	

Residential:

dirt

Note:

Source:

Industrial districts (72% impervious)

⅓ acre	30%	NA	0.49	0.67
½ acre	25%	NA	0.45	0.65
1 acre	20%	NA	0.41	0.63
Paved parking lots, roofs, driveways, et	tc.	0.99	0.99	0.99
Streets and roads:				
paved with curbs and storm sewers		0.99	0.99	0.99
gravel		0.57	0.76	0.84

0.67

0.81

0.88

0.86

0.70

0.49 0.69 0.80

NA denotes information is not available; design engineers should rely on another authoritative source.

New Jersey Department of Environmental Protection, Technical Manual for Land Use Regulation Program, Bureaus of

Inland and Coastal Regulations, Stream Encroachment Permits (Trenton, New Jersey: Department of Environmental Protection, Revised September 1995) p. 12.

NOAA Atlas 14, Volume 2, Version 3 Location name: Lawrence Township, New Jersey, USA*

Latitude: 40.2864°, Longitude: -74.6847°

Elevation: 71 ft**

* source: ESRI Maps

** source: USGS

POINT PRECIPITATION FREQUENCY ESTIMATES

G.M. Bonnin, D. Martin, B. Lin, T. Parzybok, M.Yekta, and D. Riley NOAA, National Weather Service, Silver Spring, Maryland

PF tabular | PF graphical | Maps & aerials

PF tabular

PDS-b	ased poir	nt precipit	ation freq	uency es	timates w	ith 90% c	onfidence	intervals	(in inche	s/hour) ¹
Duration				Avera	ge recurren	ce interval (years)			
Duration	1	2	5	10	25	50	100	200	500	1000
5-min	4.08 (3.68-4.50)	4.86 (4.42-5.38)	5.78 (5.22-6.38)	6.46 (5.82-7.12)	7.28 (6.53-8.03)	7.88 (7.04-8.70)	8.48 (7.55-9.38)	9.05 (8.00-10.0)	9.76 (8.54-10.9)	10.3 (8.94-11.5)
10-min	3.25 (2.95-3.60)	3.89 (3.53-4.30)	4.63 (4.18-5.11)	5.16 (4.66-5.69)	5.80 (5.21-6.40)	6.28 (5.61-6.93)	6.74 (5.99-7.45)	7.17 (6.34-7.96)	7.72 (6.76-8.60)	8.11 (7.04-9.08)
15-min	2.71 (2.46-3.00)	3.26 (2.96-3.60)	3.90 (3.53-4.31)	4.35 (3.93-4.80)	4.90 (4.40-5.41)	5.30 (4.74-5.85)	5.68 (5.05-6.28)	6.03 (5.33-6.69)	6.47 (5.67-7.22)	6.78 (5.89-7.60)
30-min	1.86 (1.68-2.05)	2.25 (2.04-2.49)	2.77 (2.51-3.06)	3.15 (2.84-3.48)	3.63 (3.26-4.01)	3.99 (3.57-4.40)	4.35 (3.87-4.81)	4.70 (4.15-5.21)	5.15 (4.51-5.74)	5.49 (4.77-6.16)
60-min	1.16 (1.05-1.28)	1.41 (1.28-1.56)	1.78 (1.61-1.96)	2.05 (1.85-2.26)	2.42 (2.17-2.67)	2.70 (2.42-2.98)	3.00 (2.66-3.31)	3.29 (2.91-3.65)	3.70 (3.24-4.12)	4.01 (3.48-4.49)
2-hr	0.703 (0.636-0.779)	0.857 (0.775-0.949)	1.09 (0.982-1.20)	1.26 (1.14-1.39)	1.51 (1.35-1.66)	1.70 (1.52-1.88)	1.90 (1.68-2.10)	2.11 (1.86-2.34)	2.40 (2.09-2.68)	2.63 (2.27-2.95)
3-hr	0.515 (0.463-0.574)	0.627 (0.566-0.699)	0.796 (0.716-0.888)	0.928 (0.832-1.03)	1.11 (0.992-1.24)	1.26 (1.12-1.40)	1.42 (1.25-1.58)	1.58 (1.38-1.77)	1.81 (1.56-2.03)	2.00 (1.70-2.25)
6-hr	0.327 (0.294-0.367)	0.397 (0.357-0.445)	0.502 (0.450-0.562)	0.589 (0.525-0.657)	0.713 (0.630-0.796)	0.817 (0.717-0.911)	0.929 (0.807-1.04)	1.05 (0.902-1.17)	1.22 (1.03-1.37)	1.37 (1.14-1.55)
12-hr	0.197 (0.177-0.223)	0.238 (0.214-0.270)	0.304 (0.271-0.343)	0.359 (0.320-0.405)	0.442 (0.390-0.497)	0.514 (0.449-0.578)	0.593 (0.511-0.666)	0.681 (0.578-0.767)	0.812 (0.676-0.920)	0.925 (0.756-1.05)
24-hr	0.114 (0.104-0.125)	0.138 (0.127-0.151)	0.176 (0.161-0.193)	0.208 (0.190-0.228)	0.257 (0.233-0.280)	0.299 (0.268-0.326)	0.345 (0.307-0.376)	0.396 (0.349-0.433)	0.473 (0.410-0.518)	0.539 (0.461-0.592)
2-day	0.066 (0.060-0.072)	0.080 (0.073-0.088)	0.102 (0.093-0.112)	0.120 (0.110-0.132)	0.147 (0.133-0.161)	0.170 (0.153-0.186)	0.195 (0.174-0.214)	0.223 (0.197-0.244)	0.263 (0.229-0.290)	0.298 (0.256-0.329)
3-day	0.046 (0.043-0.051)	0.056 (0.052-0.061)	0.071 (0.065-0.078)	0.084 (0.077-0.092)	0.102 (0.093-0.111)	0.118 (0.106-0.128)	0.134 (0.121-0.146)	0.152 (0.136-0.167)	0.179 (0.157-0.196)	0.201 (0.175-0.221)
4-day	0.037 (0.034-0.040)	0.044 (0.041-0.048)	0.056 (0.052-0.061)	0.066 (0.060-0.072)	0.080 (0.073-0.087)	0.091 (0.083-0.099)	0.104 (0.094-0.113)	0.117 (0.105-0.128)	0.137 (0.121-0.149)	0.153 (0.134-0.167)
7-day	0.024 (0.022-0.027)	0.029 (0.027-0.032)	0.037 (0.034-0.040)	0.043 (0.039-0.046)	0.051 (0.047-0.056)	0.058 (0.053-0.064)	0.066 (0.060-0.072)	0.074 (0.067-0.081)	0.086 (0.076-0.094)	0.096 (0.084-0.105)
10-day	0.019 (0.018-0.021)	0.023 (0.021-0.025)	0.028 (0.026-0.031)	0.033 (0.030-0.036)	0.039 (0.036-0.042)	0.044 (0.040-0.048)	0.049 (0.045-0.053)	0.055 (0.049-0.059)	0.062 (0.056-0.068)	0.069 (0.061-0.075)
20-day	0.013 (0.012-0.014)	0.015 (0.014-0.016)	0.018 (0.017-0.020)	0.021 (0.020-0.022)	0.024 (0.023-0.026)	0.027 (0.025-0.029)	0.030 (0.027-0.032)	0.032 (0.030-0.034)	0.036 (0.033-0.038)	0.039 (0.035-0.042)
30-day	0.011 (0.010-0.011)	0.013 (0.012-0.013)	0.015 (0.014-0.016)	0.017 (0.016-0.018)	0.019 (0.018-0.020)	0.021 (0.019-0.022)	0.022 (0.021-0.024)	0.024 (0.022-0.025)	0.026 (0.024-0.028)	0.028 (0.026-0.030)
45-day	0.009 (0.008-0.009)	0.011 (0.010-0.011)	0.012 (0.012-0.013)	0.014 (0.013-0.014)	0.015 (0.014-0.016)	0.016 (0.016-0.017)	0.018 (0.017-0.019)	0.019 (0.018-0.020)	0.020 (0.019-0.021)	0.021 (0.020-0.023)
60-day	0.008 (0.008-0.008)	0.009 (0.009-0.010)	0.011 (0.010-0.011)	0.012 (0.011-0.013)	0.013 (0.013-0.014)	0.014 (0.013-0.015)	0.015 (0.014-0.016)	0.016 (0.015-0.017)	0.017 (0.016-0.018)	0.018 (0.017-0.019)

¹ Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).

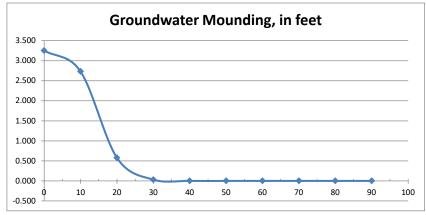
Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values.

Please refer to NOAA Atlas 14 document for more information.

Back to Top

Basin 1

Input Values		
9.25	R	Recharge rate (permeability rate) (in/hr) Specific yield, Sy (dimensionless)
0.150	Sy	default value is 0.15; max value is 0.2 provided that a lab test data is submitted Horizontal hydraulic conductivity (in/hr)
9.25	Kh	Kh = 5xRecharge Rate (R) in the costal plan; Kh=R outside the coastal plan
15.000	х	1/2 length of basin (x direction, in feet)
98.000	у	1/2 width of basin (y direction, in feet)
0.65	t	Duration of infiltration period (hours)
10.00	hi(0)	Initial thickness of saturated zone (feet)
13.251	h(max)	Maximum thickness of saturated zone (beneath center of basin at end of infiltration period)


Distance from **Ground-water** center of basin in x

Δh(max)

Mounding, in feet direction, in feet

wiouriums, in icct	uncetion, in feet
3.251	0
2.731	10
0.576	20
0.032	30
0.002	40
0.001	50
0.001	60
0.001	70
0.001	80
0.001	90

Re-Calculate Now

Maximum groundwater mounding (beneath center of basin at end of infiltration period)

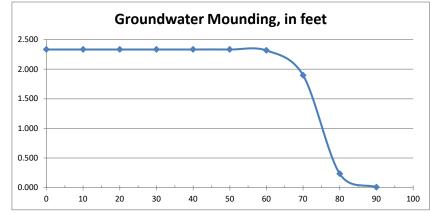
Disclaimer

This spreadsheet solving the Hantush (1967) equation for ground-water mounding beneath an infiltration basin is made available to the general public as a convenience for those wishing to replicate values documented in the USGS Scientific Investigations Report 2010-5102 "Groundwater mounding beneath hypothetical stormwater infiltration basins" or to calculate values based on user-specified site conditions. Any changes made to the spreadsheet (other than values identified as user-specified) after transmission from the USGS could have unintended, undesirable consequences. These consequences could include, but may not be limited to: erroneous output, numerical instabilities, and violations of underlying assumptions that are inherent in results presented in the accompanying USGS published report. The USGS assumes no responsibility for the consequences of any changes made to the spreadsheet. If changes are made to the spreadsheet, the user is responsible for documenting the changes and justifying the results and conclusions.

Basin 2 Input Values

5.00	R	Recharge rate (permeability rate) (in/hr) Specific yield, Sy (dimensionless)
0.150	Sy	default value is 0.15; max value is 0.2 provided that a lab test data is submitted Horizontal hydraulic conductivity (in/hr)
5.00	Kh	Kh = 5xRecharge Rate (R) in the costal plan; Kh=R outside the coastal plan
74.000	x	1/2 length of basin (x direction, in feet)
28.000	у	1/2 width of basin (y direction, in feet)
0.84	t	Duration of infiltration period (hours)
10.00	hi(0)	Initial thickness of saturated zone (feet)

12.333 h(max)
2.333 Δh(max)
Distance from


Maximum thickness of saturated zone (beneath center of basin at end of infiltration period)

Maximum groundwater mounding (beneath center of basin at end of infiltration period)

Disclaimer

This spreadsheet solving the Hantush (1967) equation for ground-water mounding beneath an infiltration basin is made available to the general public as a convenience for those wishing to replicate values documented in the USGS Scientific Investigations Report 2010-5102 "Groundwater mounding beneath hypothetical stormwater infiltration basins" or to calculate values based on user-specified site conditions. Any changes made to the spreadsheet (other than values identified as user-specified) after transmission from the USGS could have unintended, undesirable consequences. These consequences could include, but may not be limited to: erroneous output, numerical instabilities, and violations of underlying assumptions that are inherent in results presented in the accompanying USGS published report. The USGS assumes no responsibility for the consequences of any changes made to the spreadsheet. If changes are made to the spreadsheet, the user is responsible for documenting the changes and justifying the results and conclusions.

Basin 2 - Modified

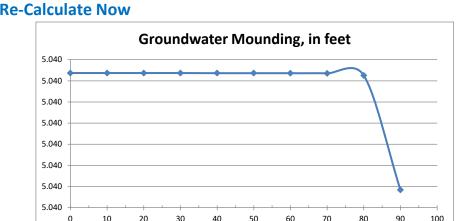
put Values		
0.35	R	Recharge rate (permeability rate) (in/hr) Specific yield, Sy (dimensionless)
0.150	Sy	default value is 0.15; max value is 0.2 provided that a lab test data is submitted Horizontal hydraulic conductivity (in/hr)
5.00	Kh	Kh = 5xRecharge Rate (R) in the costal plan; Kh=R outside the coastal plan
74.000	x	1/2 length of basin (x direction, in feet)
28.000	У	1/2 width of basin (y direction, in feet)
11.95	ť	Duration of infiltration period (hours)
10.00	hi(0)	Initial thickness of saturated zone (feet)
11.999	h(max)	Maximum thickness of saturated zone (beneath center of basin at end of infiltration period)
1.999	Δh(max)	Maximum groundwater mounding (beneath center of basin at end of infiltration period)
	Distance from	
round-water	center of basin in x	
Touriu-water	center of basin in x	
lounding, in feet		
	direction, in feet	
lounding, in feet	direction, in feet 0	Re-Calculate Now
lounding, in feet 1.999	direction, in feet 0	Re-Calculate Now
lounding, in feet 1.999 1.997	direction, in feet 0 10 20	
lounding, in feet 1.999 1.997 1.991	direction, in feet 0 10 20 30	Re-Calculate Now Groundwater Mounding, in feet
lounding, in feet 1.999 1.997 1.991 1.972	0 10 20 30 40	Re-Calculate Now
lounding, in feet 1.999 1.997 1.991 1.972 1.927	0 10 20 30 40 50	Re-Calculate Now Groundwater Mounding, in feet
lounding, in feet 1.999 1.997 1.991 1.972 1.927 1.827	direction, in feet 0 10 20 30 40 50 60	Re-Calculate Now Groundwater Mounding, in feet
1.999 1.997 1.991 1.972 1.972 1.927 1.827 1.623	direction, in feet 0 10 20 30 40 50 60 70	Re-Calculate Now Groundwater Mounding, in feet 2.500 2.000
lounding, in feet 1.999 1.997 1.991 1.972 1.927 1.827 1.623 1.238	direction, in feet 0 10 20 30 40 50 60 70	Re-Calculate Now Groundwater Mounding, in feet
1.999 1.997 1.991 1.992 1.972 1.927 1.827 1.623 1.238 0.678	direction, in feet 0 10 20 30 40 50 60 70 80	Re-Calculate Now Groundwater Mounding, in feet 2.500 2.000
1.999 1.997 1.991 1.992 1.972 1.927 1.827 1.623 1.238 0.678	direction, in feet 0 10 20 30 40 50 60 70 80	Re-Calculate Now Groundwater Mounding, in feet 2.500 2.000
1.999 1.997 1.991 1.992 1.972 1.927 1.827 1.623 1.238 0.678	direction, in feet 0 10 20 30 40 50 60 70 80	Re-Calculate Now Groundwater Mounding, in feet 2.500 2.000 1.500
1.999 1.997 1.991 1.992 1.972 1.927 1.827 1.623 1.238 0.678	direction, in feet 0 10 20 30 40 50 60 70 80	Re-Calculate Now Groundwater Mounding, in feet 2.500 2.000 1.500

Disclaimer

This spreadsheet solving the Hantush (1967) equation for ground-water mounding beneath an infiltration basin is made available to the general public as a convenience for those wishing to replicate values documented in the USGS Scientific Investigations Report 2010-5102 "Groundwater mounding beneath hypothetical stormwater infiltration basins" or to calculate values based on user-specified site conditions. Any changes made to the spreadsheet (other than values identified as user-specified) after transmission from the USGS could have unintended, undesirable consequences. These consequences could include, but may not be limited to: erroneous output, numerical instabilities, and violations of underlying assumptions that are inherent in results presented in the accompanying USGS published report. The USGS assumes no responsibility for the consequences of any changes made to the spreadsheet. If changes are made to the spreadsheet, the user is responsible for documenting the changes and justifying the results and conclusions.

0.000

Basin 3


Input Values	<u></u>	
11.50	<mark>0</mark> R	Recharge rate (permeability rate) (in/hr) Specific yield, Sy (dimensionless)
0.150	<mark>o</mark> Sy	default value is 0.15; max value is 0.2 provided that a lab test data is submitted Horizontal hydraulic conductivity (in/hr)
11.5	<mark>0</mark> Kh	Kh = 5xRecharge Rate (R) in the costal plan; Kh=R outside the coastal plan
130.00	<mark>0</mark> х	1/2 length of basin (x direction, in feet)
30.00	<mark>0</mark> у	1/2 width of basin (y direction, in feet)
0.7	<mark>9</mark> t	Duration of infiltration period (hours)
10.0	<mark>0</mark> hi(0)	Initial thickness of saturated zone (feet)
15.04	0 h(max)	Maximum thickness of saturated zone (beneath center of basin at end of infiltration period)

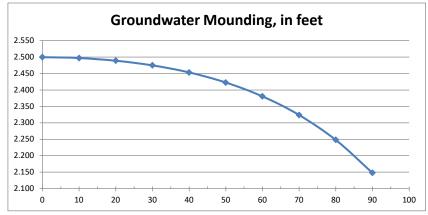
Δh(max) Distance from **Ground-water** center of basin in x

5.040

Maximum groundwater mounding (beneath center of basin at end of infiltration period)

Disclaimer

This spreadsheet solving the Hantush (1967) equation for ground-water mounding beneath an infiltration basin is made available to the general public as a convenience for those wishing to replicate values documented in the USGS Scientific Investigations Report 2010-5102 "Groundwater mounding beneath hypothetical stormwater infiltration basins" or to calculate values based on user-specified site conditions. Any changes made to the spreadsheet (other than values identified as user-specified) after transmission from the USGS could have unintended, undesirable consequences. These consequences could include, but may not be limited to: erroneous output, numerical instabilities, and violations of underlying assumptions that are inherent in results presented in the accompanying USGS published report. The USGS assumes no responsibility for the consequences of any changes made to the spreadsheet. If changes are made to the spreadsheet, the user is responsible for documenting the changes and justifying the results and conclusions.


Basin 3 - Modified

In	put Values		
	0.24	R	Recharge rate (permeability rate) (in/hr) Specific yield, Sy (dimensionless)
	0.150	Sy	default value is 0.15; max value is 0.2 provided that a lab test data is submitted Horizontal hydraulic conductivity (in/hr)
	11.50	Kh	Kh = 5xRecharge Rate (R) in the costal plan; Kh=R outside the coastal plan
	130.000	х	1/2 length of basin (x direction, in feet)
	30.000	У	1/2 width of basin (y direction, in feet)
	37.07	t	Duration of infiltration period (hours)
	10.00	hi(0)	Initial thickness of saturated zone (feet)
	12.500	h(max)	Maximum thickness of saturated zone (beneath center of basin at end of infiltration period)
	2.500	Δh(max)	Maximum groundwater mounding (beneath center of basin at end of infiltration period)

Distance from
Ground-water center of basin in x
Mounding, in feet direction, in feet

2.500 0 2.497 10 2.489 20 2.475 30 2.453 40 2.423 50 2.380 60 70 2.248 80 2,148 90

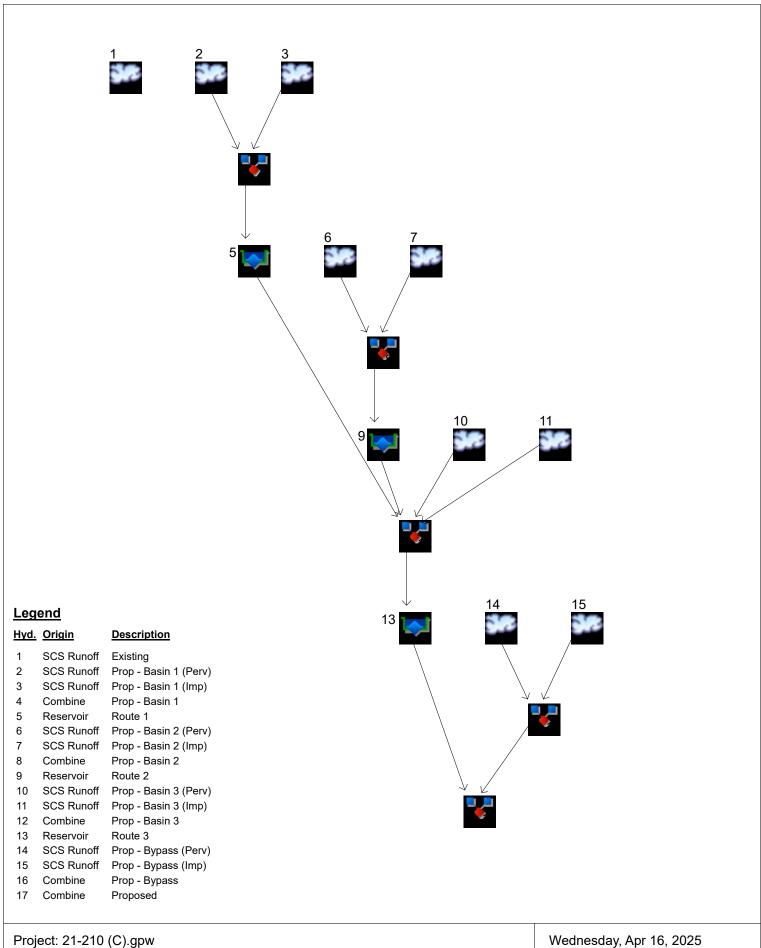
Re-Calculate Now

Disclaimer

This spreadsheet solving the Hantush (1967) equation for ground-water mounding beneath an infiltration basin is made available to the general public as a convenience for those wishing to replicate values documented in the USGS Scientific Investigations Report 2010-5102 "Groundwater mounding beneath hypothetical stormwater infiltration basins" or to calculate values based on user-specified site conditions. Any changes made to the spreadsheet (other than values identified as user-specified) after transmission from the USGS could have unintended, undesirable consequences. These consequences could include, but may not be limited to: erroneous output, numerical instabilities, and violations of underlying assumptions that are inherent in results presented in the accompanying USGS published report. The USGS assumes no responsibility for the consequences of any changes made to the spreadsheet. If changes are made to the spreadsheet, the user is responsible for documenting the changes and justifying the results and conclusions.

Table 5-2: NJDEP 1.25-Inch/2-Hour Stormwater Runoff Water Quality Design Storm Rainfall Distribution

	Cumulative		Cumulative		Cumulative		
Time	Rainfall	Time	Rainfall	Time	Rainfall		
(Minutes)	(Minutes) (Inches)		(Inches)	(Minutes)	(Inches)		
1	0.00166	41	0.1728	81	1.0906		
2	2 0.00332		0.1796	82	1.0972		
3	0.00498	43	0.1864	83	1.1038		
4	0.00664	44	0.1932	84	1.1104		
5	0.00830	45	0.2000	85	1.1170		
6	0.00996	46	0.2117	86	1.1236		
7	0.01162	47	0.2233	87	1.1302		
8	0.01328	48	0.2350	88	1.1368		
9	0.01494	49	0.2466	89	1.1434		
10	0.01660	50	0.2583	90	1.1500		
11	0.01828	51	0.2783	91	1.1550		
12	0.01996	52	0.2983	92	1.1600		
13	0.02164	53	0.3183	93	1.1650		
14	0.02332	54	0.3383	94	1.1700		
15	0.02500	55	0.3583	95	1.1750		
16	0.03000	56	0.4116	96	1.1800		
17	0.03500	57	0.4650	97	1.1850		
18	0.04000	58	0.5183	98	1.1900		
19	0.04500	59	0.5717	99	1.1950		
20	0.05000	60	0.6250	100	1.2000		
21	0.05500	61	0.6783	101	1.2050		
22	0.06000	62	0.7317	102	1.2100		
23	0.06500	63	0.7850	103	1.2150		
24	0.07000	64	0.8384	104	1.2200		
25	0.07500	65	0.8917	105	1.2250		
26	0.08000	66	0.9117	106	1.2267		
27	0.08500	67	0.9317	107	1.2284		
28	0.09000	68	0.9517	108	1.2300		
29	0.09500	69	0.9717	109	1.2317		
30	0.10000	70	0.9917	110	1.2334		
31	0.10660	71	1.0034	111	1.2351		
32	0.11320	72	1.0150	112	1.2367		
33	0.11980	73	1.0267	113	1.2384		
34	0.12640	74	1.0383	114	1.2400		
35	0.13300	75	1.0500	115	1.2417		
36	0.13960	76	1.0568	116	1.2434		
37	0.14620	77	1.0636	117	1.2450		
38	0.15280	78	1.0704	118	1.2467		
39	0.15940	79	1.0772	119	1.2483		
40	0.16600	80	1.0840	120	1.2500		


Hydraflow Hydrographs by Intelisolve v9.25

Wednesday, Apr 16, 2025

Wate	ershed Model Schematic	1
2 - Y	ear	
	Summary Report	. 2
	lydrograph Reports	
	Hydrograph No. 1, SCS Runoff, Existing	
	TR-55 Tc Worksheet	
	Hydrograph No. 2, SCS Runoff, Prop - Basin 1 (Perv)	
	TR-55 Tc Worksheet	
	Hydrograph No. 3, SCS Runoff, Prop - Basin 1 (Imp)	
	TR-55 Tc Worksheet	
	Hydrograph No. 4, Combine, Prop - Basin 1	
	Hydrograph No. 5, Reservoir, Route 1	
	Pond Report - Basin 1	
	Hydrograph No. 6, SCS Runoff, Prop - Basin 2 (Perv)	
	TR-55 Tc Worksheet	
	Hydrograph No. 7, SCS Runoff, Prop - Basin 2 (Imp)	14
	TR-55 Tc Worksheet	
	Hydrograph No. 8, Combine, Prop - Basin 2	
	Hydrograph No. 9, Reservoir, Route 2	
	Pond Report - Basin 2	
	Hydrograph No. 10, SCS Runoff, Prop - Basin 3 (Perv)	
	TR-55 Tc Worksheet	
	Hydrograph No. 11, SCS Runoff, Prop - Basin 3 (Imp)	
	TR-55 Tc Worksheet	
	Hydrograph No. 12, Combine, Prop - Basin 3	23
	Hydrograph No. 13, Reservoir, Route 3	24
	Pond Report - Basin 3	25
	Hydrograph No. 14, SCS Runoff, Prop - Bypass (Perv)	
	TR-55 Tc Worksheet	27
	Hydrograph No. 15, SCS Runoff, Prop - Bypass (Imp)	28
	TR-55 Tc Worksheet	
	Hydrograph No. 16, Combine, Prop - Bypass	30
	Hydrograph No. 17, Combine, Proposed	
10 -	Year	
S	Summary Report	32
Н	lydrograph Reports	33
	Hydrograph No. 1, SCS Runoff, Existing	33
	Hydrograph No. 2, SCS Runoff, Prop - Basin 1 (Perv)	
	Hydrograph No. 3, SCS Runoff, Prop - Basin 1 (Imp)	
	Hydrograph No. 4, Combine, Prop - Basin 1	
	Hydrograph No. 5, Reservoir, Route 1	
	Hydrograph No. 6, SCS Runoff, Prop - Basin 2 (Perv)	
	Hydrograph No. 7, SCS Runoff, Prop - Basin 2 (Imp)	
	Hydrograph No. 8, Combine, Prop - Basin 2	
	Hydrograph No. 9, Reservoir, Route 2	
	Hydrograph No. 10, SCS Runoff, Prop - Basin 3 (Perv)	
	Hydrograph No. 11, SCS Runoff, Prop - Basin 3 (Imp)	
	Hydrograph No. 12, Combine, Prop - Basin 3	

Hydrograph No. 13, Reservoir, Route 3	45
Hydrograph No. 14, SCS Runoff, Prop - Bypass (Perv)	
Hydrograph No. 15, SCS Runoff, Prop - Bypass (Imp)	
Hydrograph No. 16, Combine, Prop - Bypass	
Hydrograph No. 17, Combine, Proposed	49
100 - Year	
Summary Report	. 50
Hydrograph Reports	
Hydrograph No. 1, SCS Runoff, Existing	
Hydrograph No. 2, SCS Runoff, Prop - Basin 1 (Perv)	
Hydrograph No. 3, SCS Runoff, Prop - Basin 1 (Imp)	
Hydrograph No. 4, Combine, Prop - Basin 1	
Hydrograph No. 5, Reservoir, Route 1	
Hydrograph No. 6, SCS Runoff, Prop - Basin 2 (Perv)	
Hydrograph No. 7, SCS Runoff, Prop - Basin 2 (Imp)	
Hydrograph No. 8, Combine, Prop - Basin 2	
Hydrograph No. 9, Reservoir, Route 2	
Hydrograph No. 10, SCS Runoff, Prop - Basin 3 (Perv)	
Hydrograph No. 11, SCS Runoff, Prop - Basin 3 (Imp)	
Hydrograph No. 12, Combine, Prop - Basin 3	
Hydrograph No. 13, Reservoir, Route 3	
Hydrograph No. 14, SCS Runoff, Prop - Bypass (Perv)	
Hydrograph No. 15, SCS Runoff, Prop - Bypass (Imp)	
Hydrograph No. 16, Combine, Prop - Bypass	
Hydrograph No. 17, Combine, Proposed	

Watershed Model Schematic

Wednesday, Apr 16, 2025

Hydrograph Summary Report

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph description
1	SCS Runoff	1.791	1	736	9,658				Existing
2	SCS Runoff	0.678	1	729	2,104				Prop - Basin 1 (Perv)
3	SCS Runoff	1.671	1	726	4,843				Prop - Basin 1 (Imp)
4	Combine	2.271	1	726	6,947	2, 3			Prop - Basin 1
5	Reservoir	0.148	1	804	4,046	4	76.29	4,571	Route 1
6	SCS Runoff	0.768	1	732	2,802				Prop - Basin 2 (Perv)
7	SCS Runoff	1.069	1	731	4,399				Prop - Basin 2 (Imp)
3	Combine	1.836	1	732	7,200	6, 7			Prop - Basin 2
9	Reservoir	0.283	1	774	4,891	8	73.54	4,146	Route 2
10	SCS Runoff	1.771	1	735	7,275				Prop - Basin 3 (Perv)
11	SCS Runoff	7.102	1	726	21,034				Prop - Basin 3 (Imp)
12	Combine	8.271	1	726	37,247	5, 9, 10,			Prop - Basin 3
13	Reservoir	0.220	1	1254	21,746	11 12	68.74	27,557	Route 3
14	SCS Runoff	0.728	1	731	2,502				Prop - Bypass (Perv)
15	SCS Runoff	0.160	1	727	512				Prop - Bypass (Imp)
16	Combine	0.845	1	730	3,014	14, 15			Prop - Bypass
17	Combine	0.872	1	730	24,759	13, 16			Proposed
21-2	210 (C).gpw				Return F	Period: 2 Ye	ar	Wednesda	y, Apr 16, 2025

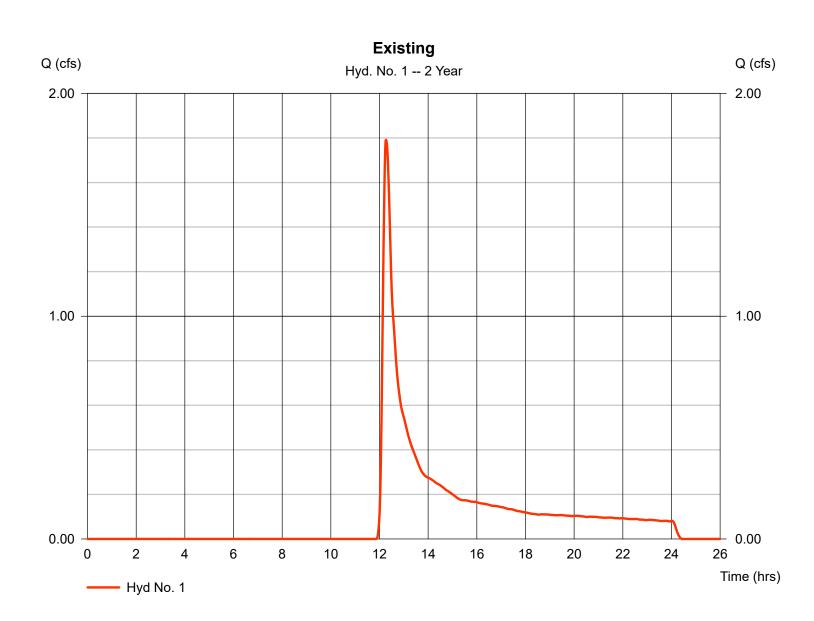
Hydrograph Report

Hydraflow Hydrographs by Intelisolve v9.25

Wednesday, Apr 16, 2025

Hyd. No. 1

Existing


Hydrograph type = SCS Runoff
Storm frequency = 2 yrs
Time interval = 1 min
Drainage area = 5.229 ac
Basin Slope = 0.0 %
Tc method = TR55
Total precip. = 3.34 in

Storm duration = NOAA C.cds

Peak discharge = 1.791 cfs
Time to peak = 12.27 hrs
Hyd. volume = 9,658 cuft
Curve number = 61*
Hydraulic length = 0 ft

Time of conc. (Tc) = 16.40 min
Distribution = Custom
Shape factor = 484

^{*} Composite (Area/CN) = [(2.998 x 55) + (2.231 x 70)] / 5.229

Hydraflow Hydrographs by Intelisolve v9.25

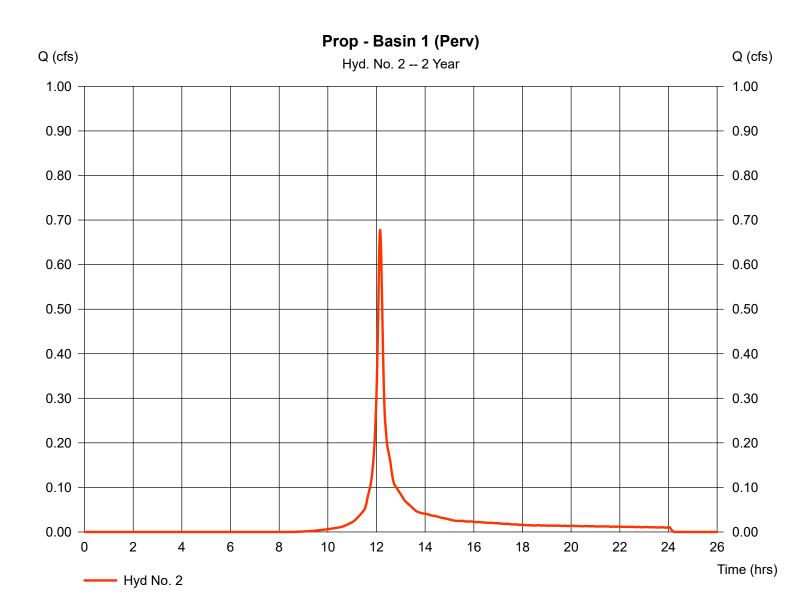
Hyd. No. 1

Existing

<u>Description</u>		<u>A</u>		<u>B</u>		<u>C</u>		<u>Totals</u>	
Sheet Flow Manning's n-value Flow length (ft) Two-year 24-hr precip. (in) Land slope (%)	= : = :	0.400 100.0 3.31 6.00		0.011 0.0 0.00 0.00		0.011 0.0 0.00 0.00			
Travel Time (min)	=	13.61	+	0.00	+	0.00	=	13.61	
Shallow Concentrated Flow Flow length (ft) Watercourse slope (%) Surface description Average velocity (ft/s)	= 4 = 1 = ;	559.00 4.40 Unpaved 3.38		0.00 0.00 Paved 0.00		0.00 0.00 Paved 0.00		2.75	
Travel Time (min)	= :	2.75	+	0.00	+	0.00	=	2.75	
Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value Velocity (ft/s) Flow length (ft)	= 9 = 1 = 0 = 9	7.07 9.43 1.00 0.013 9.45 10.0		0.00 0.00 0.00 0.015 0.00 0.0		0.00 0.00 0.00 0.015 0.00			
Travel Time (min)	=	0.02	+	0.00	+	0.00	=	0.02	
Total Travel Time, Tc								16.40 min	

Hydrograph Report

Hydraflow Hydrographs by Intelisolve v9.25


Wednesday, Apr 16, 2025

Hyd. No. 2

Prop - Basin 1 (Perv)

Hydrograph type = SCS Runoff Peak discharge = 0.678 cfsTime to peak Storm frequency = 2 yrs $= 12.15 \, hrs$ Time interval = 1 min Hyd. volume = 2,104 cuftDrainage area = 0.351 acCurve number = 82* Basin Slope = 0.0 % Hydraulic length = 0 ftTc method = TR55 Time of conc. (Tc) = 9.20 min Distribution Total precip. = 3.34 in= Custom Storm duration = NOAA C.cds Shape factor = 484

^{*} Composite (Area/CN) = [(0.196 x 79) + (0.155 x 86)] / 0.351

Hydraflow Hydrographs by Intelisolve v9.25

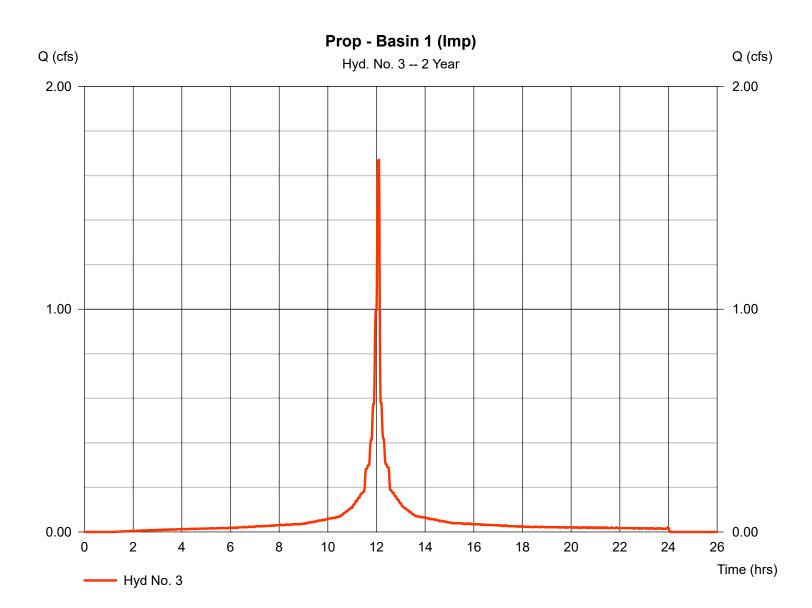
Hyd. No. 2

Prop - Basin 1 (Perv)

<u>Description</u>	<u>A</u>		<u>B</u>		<u>C</u>		<u>Totals</u>
Sheet Flow Manning's n-value Flow length (ft) Two-year 24-hr precip. (in) Land slope (%)	= 0.240 = 72.0 = 3.31 = 3.60		0.011 28.0 3.31 4.40		0.011 0.0 0.00 0.00		
Travel Time (min)	= 8.53	+	0.31	+	0.00	=	8.84
Shallow Concentrated Flow Flow length (ft) Watercourse slope (%) Surface description Average velocity (ft/s)	= 4.00 = 4.40 = Paved = 4.26		0.00 0.00 Paved 0.00		0.00 0.00 Paved 0.00		
Travel Time (min)	= 0.02	+	0.00	+	0.00	=	0.02
Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value Velocity (ft/s) Flow length (ft)	= 0.20 = 1.57 = 2.00 = 0.011 = 4.75 = 6.0		1.23 3.93 1.00 0.012 5.70 101.0		0.00 0.00 0.00 0.015 0.00 0.0		
Travel Time (min)	= 0.02	+	0.30	+	0.00	=	0.32
Total Travel Time, Tc							

Hydrograph Report

Hydraflow Hydrographs by Intelisolve v9.25


Wednesday, Apr 16, 2025

Hyd. No. 3

Prop - Basin 1 (Imp)

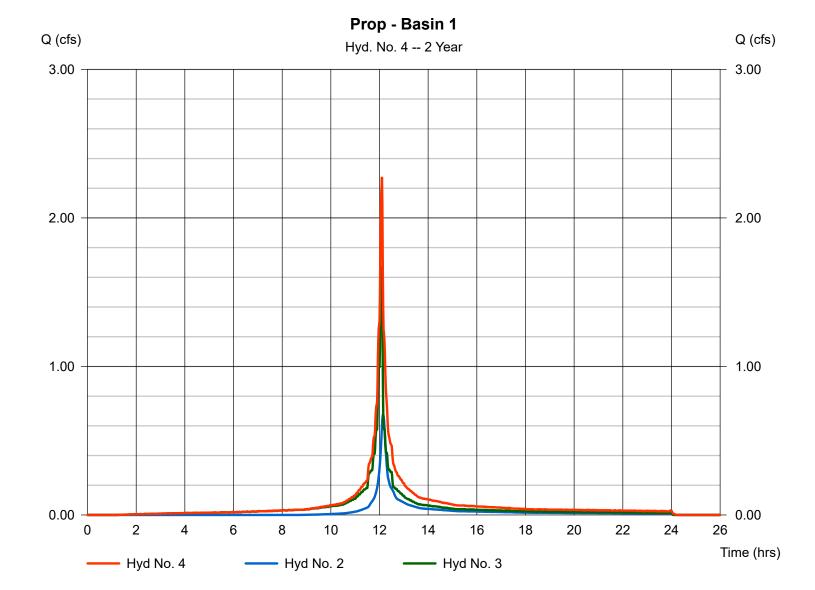
Hydrograph type = SCS Runoff Storm frequency = 2 yrsTime interval = 1 min Drainage area = 0.458 acBasin Slope = 0.0 % Tc method = TR55 Total precip. = 3.34 inStorm duration = NOAA C.cds

Peak discharge = 1.671 cfsTime to peak = 12.10 hrsHyd. volume = 4,843 cuft Curve number = 98 Hydraulic length = 0 ftTime of conc. (Tc) $= 1.60 \, \text{min}$ Distribution = Custom = 484 Shape factor

Hyd. No. 3

Prop - Basin 1 (Imp)

<u>Description</u>	<u>A</u>		<u>B</u>		<u>C</u>		<u>Totals</u>
Sheet Flow Manning's n-value Flow length (ft) Two-year 24-hr precip. (in) Land slope (%)	= 0.011 = 100.0 = 3.31 = 2.20		0.011 0.0 0.00 0.00		0.011 0.0 0.00 0.00		
Travel Time (min)	= 1.15	+	0.00	+	0.00	=	1.15
Shallow Concentrated Flow Flow length (ft) Watercourse slope (%) Surface description Average velocity (ft/s)	= 14.00 = 2.70 = Paved = 3.34		0.00 0.00 Paved 0.00		0.00 0.00 Paved 0.00		
Travel Time (min)	= 0.07	+	0.00	+	0.00	=	0.07
Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value Velocity (ft/s) Flow length (ft)	= 1.23 = 3.93 = 1.00 = 0.012 = 5.70 = 140.0		0.00 0.00 0.00 0.015 0.00 0.0		0.00 0.00 0.00 0.015 0.00 0.0		
Travel Time (min)	= 0.41	+	0.00	+	0.00	=	0.41
Total Travel Time, Tc							1.60 min


Hydraflow Hydrographs by Intelisolve v9.25

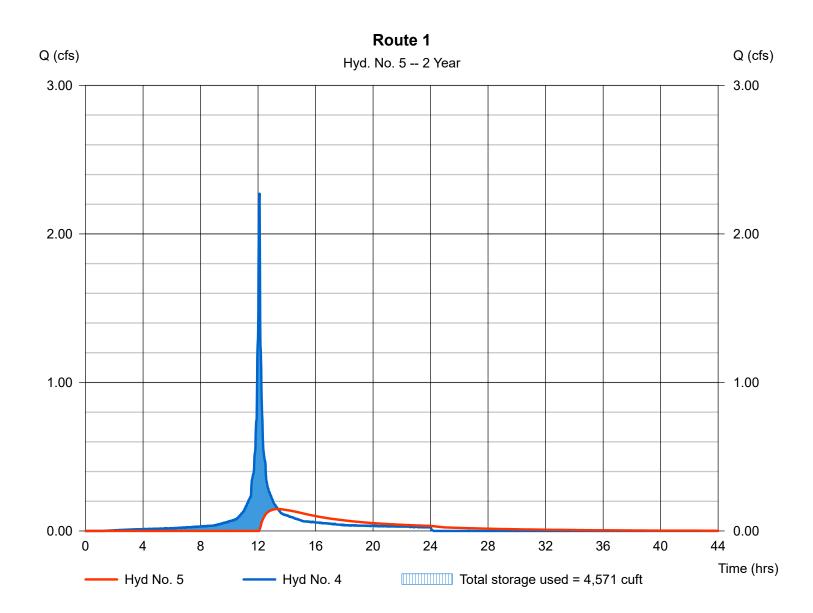
Wednesday, Apr 16, 2025

Hyd. No. 4

Prop - Basin 1

Hydrograph type = Combine Storm frequency = 2 yrs Time interval = 1 min Inflow hyds. = 2, 3 Peak discharge = 2.271 cfs
Time to peak = 12.10 hrs
Hyd. volume = 6,947 cuft
Contrib. drain. area = 0.809 ac

Hydraflow Hydrographs by Intelisolve v9.25


Wednesday, Apr 16, 2025

Hyd. No. 5

Route 1

Hydrograph type = Reservoir Peak discharge = 0.148 cfsStorm frequency Time to peak = 2 yrs = 13.40 hrsTime interval = 1 min Hyd. volume = 4,046 cuftInflow hyd. No. = 4 - Prop - Basin 1 Max. Elevation = 76.29 ftReservoir name = Basin 1 Max. Storage = 4,571 cuft

Storage Indication method used.

Wednesday, Apr 16, 2025

Pond No. 1 - Basin 1

Pond Data

Contours - User-defined contour areas. Average end area method used for volume calculation. Begining Elevation = 75.50 ft

Stage / Storage Table

Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)
0.00	75.50	5,720	0	0
0.50	76.00	5,783	2,876	2,876
1.50	77.00	5,911	5,847	8,723
2.00	77.50	5,977	2,972	11,695

Culvert / Orifice Structures					Weir Structures						
	[A]	[B]	[C]	[PrfRsr]		[A]	[B]	[C]	[D]		
Rise (in)	= 15.00	4.00	0.00	0.00	Crest Len (ft)	= 16.00	3.00	3.00	0.00		
Span (in)	= 15.00	4.00	0.00	0.00	Crest El. (ft)	= 77.00	76.50	76.50	0.00		
No. Barrels	= 1	1	0	0	Weir Coeff.	= 3.20	3.20	3.20	3.33		
Invert El. (ft)	= 74.00	76.00	0.00	0.00	Weir Type	= Riser	Rect	Rect			
Length (ft)	= 80.00	0.00	0.00	0.00	Multi-Stage	= Yes	Yes	Yes	No		
Slope (%)	= 2.80	0.00	0.00	n/a	_						
N-Value	= .012	.013	.013	n/a							
Orifice Coeff.	= 0.60	0.60	0.60	0.60	Exfil.(in/hr)	= 0.000 (by	Wet area)				
Multi-Stage	= n/a	Yes	No	No	TW Elev. (ft)	= 0.00					

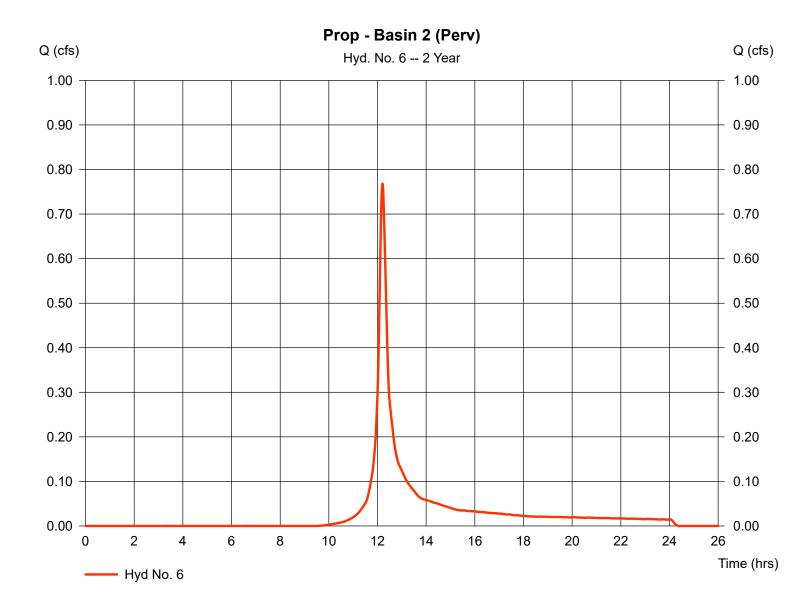
Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s).

Stage / Storage / Discharge Table

Stage ft	Storage cuft	Elevation ft	Clv A cfs	Clv B cfs	CIv C cfs	PrfRsr cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Exfil cfs	User cfs	Total cfs
0.00	0	75.50	0.00	0.00			0.00	0.00	0.00				0.000
0.50	2,876	76.00	5.53 ic	0.00			0.00	0.00	0.00				0.000
1.50	8,723	77.00	7.17 ic	0.38 ic			0.00	3.39	3.39				7.172
2.00	11,695	77.50	9.99 ic	0.05 ic			5.47 s	2.22 s	2.22 s				9.970

Hydraflow Hydrographs by Intelisolve v9.25

Wednesday, Apr 16, 2025


Hyd. No. 6

Prop - Basin 2 (Perv)

Hydrograph type = SCS Runoff Storm frequency = 2 yrsTime interval = 1 min Drainage area = 0.535 acBasin Slope = 0.0 % Tc method = TR55 Total precip. = 3.34 inStorm duration = NOAA C.cds Peak discharge = 0.768 cfs
Time to peak = 12.20 hrs
Hyd. volume = 2,802 cuft
Curve number = 79
Hydraulic length = 0 ft
Time of conc. (Tc) = 14.10 min
Distribution = Custom

Shape factor

= 484

Hyd. No. 6

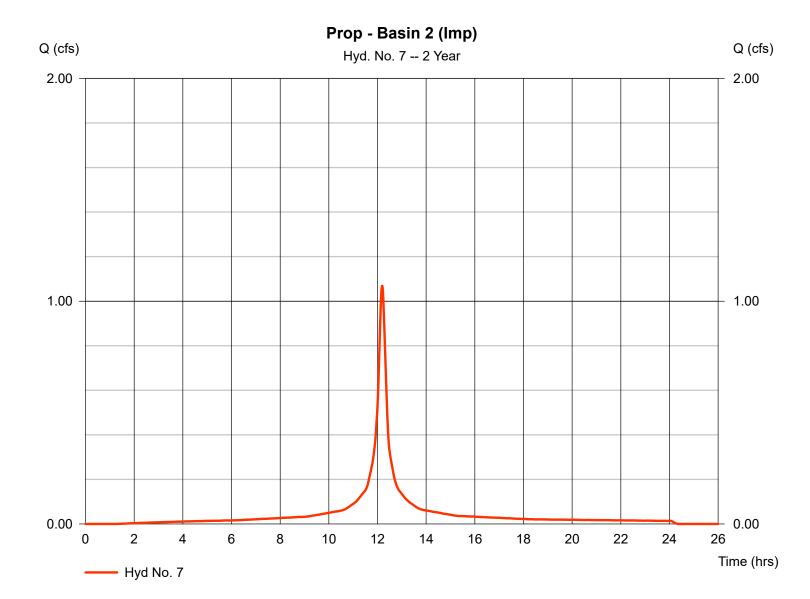
Prop - Basin 2 (Perv)

<u>Description</u>	<u>A</u>	7	<u>B</u>		<u>c</u>		<u>Totals</u>
Sheet Flow Manning's n-value Flow length (ft) Two-year 24-hr precip. (in) Land slope (%)	= 0. = 10 = 3. = 2.	00.0 .31	0.011 0.0 0.00 0.00		0.011 0.0 0.00 0.00		
Travel Time (min)	= 1	4.03 +	0.00	+	0.00	=	14.03
Shallow Concentrated Flow Flow length (ft) Watercourse slope (%) Surface description Average velocity (ft/s)	= 20 = 7. = U = 4.	.60 npaved	0.00 0.00 Paved 0.00		0.00 0.00 Paved 0.00		
Travel Time (min)	= 0	.07 +	0.00	+	0.00	=	0.07
Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value Velocity (ft/s) Flow length (ft)	= 0. = 0. = 0. = 0. = 0.	.00 .00 .015 .00	0.00 0.00 0.00 0.015 0.00 0.0		0.00 0.00 0.00 0.015 0.00 0.0		
Travel Time (min)	= 0	.00 +	0.00	+	0.00	=	0.00
Total Travel Time, Tc							14.10 min

Hydraflow Hydrographs by Intelisolve v9.25

Wednesday, Apr 16, 2025

Hyd. No. 7


Prop - Basin 2 (Imp)

Hydrograph type = SCS Runoff
Storm frequency = 2 yrs
Time interval = 1 min
Drainage area = 0.390 ac
Basin Slope = 0.0 %
Tc method = TR55
Total precip. = 3.34 in

Storm duration = NOAA C.cds

Peak discharge = 1.069 cfs
Time to peak = 12.18 hrs
Hyd. volume = 4,399 cuft
Curve number = 98
Hydraulic length = 0 ft

Time of conc. (Tc) = 13.70 min
Distribution = Custom
Shape factor = 484

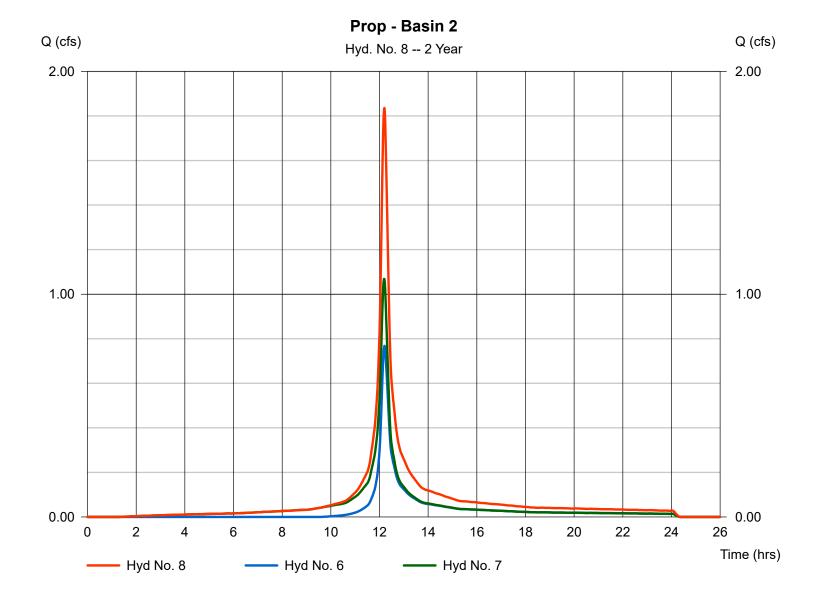
TR55 Tc Worksheet

Hydraflow Hydrographs by Intelisolve v9.25

Hyd. No. 7

Prop - Basin 2 (Imp)

<u>Description</u>	<u>A</u>		<u>B</u>		<u>C</u>		<u>Totals</u>
Sheet Flow Manning's n-value Flow length (ft) Two-year 24-hr precip. (in) Land slope (%)	= 0.011 = 5.0 = 3.31 = 2.00		0.240 95.0 3.31 2.00		0.011 0.0 0.00 0.00		
Travel Time (min)	= 0.11	+	13.47	+	0.00	=	13.58
Shallow Concentrated Flow Flow length (ft) Watercourse slope (%) Surface description Average velocity (ft/s)	= 20.00 = 7.60 = Unpave = 4.45	ed	0.00 0.00 Paved 0.00		0.00 0.00 Paved 0.00		
Travel Time (min)	= 0.07	+	0.00	+	0.00	=	0.07
Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value Velocity (ft/s) Flow length (ft)	= 0.00 = 0.00 = 0.015 = 0.00 = 0.00		0.00 0.00 0.00 0.015 0.00 0.0		0.00 0.00 0.00 0.015 0.00 0.0		
Travel Time (min)	= 0.00	+	0.00	+	0.00	=	0.00
Total Travel Time, Tc							13.70 min


Hydraflow Hydrographs by Intelisolve v9.25

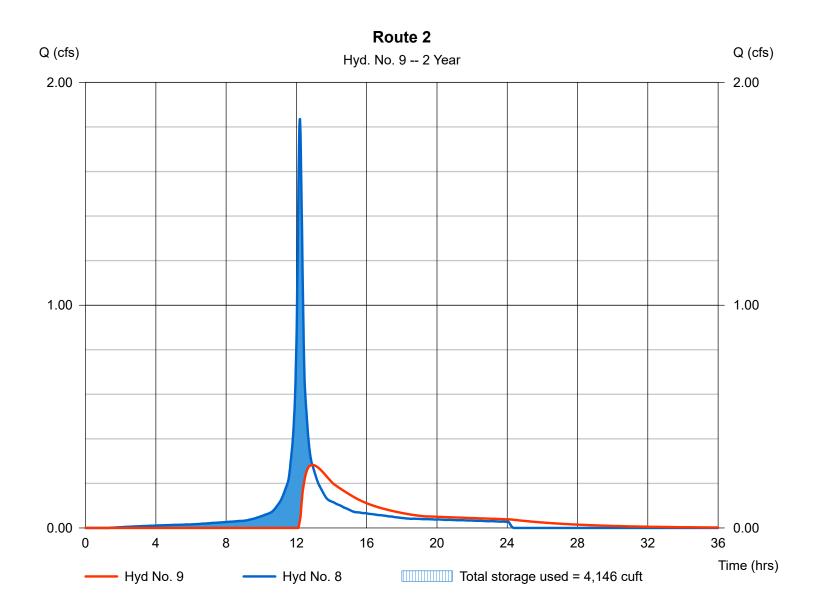
Wednesday, Apr 16, 2025

Hyd. No. 8

Prop - Basin 2

Hydrograph type = Combine Storm frequency = 2 yrs Time interval = 1 min Inflow hyds. = 6, 7 Peak discharge = 1.836 cfs
Time to peak = 12.20 hrs
Hyd. volume = 7,200 cuft
Contrib. drain. area = 0.925 ac

Hydraflow Hydrographs by Intelisolve v9.25


Wednesday, Apr 16, 2025

Hyd. No. 9

Route 2

Hydrograph type = 0.283 cfs= Reservoir Peak discharge Storm frequency Time to peak = 2 yrs = 12.90 hrsTime interval = 1 min Hyd. volume = 4,891 cuftInflow hyd. No. = 8 - Prop - Basin 2 Max. Elevation = 73.54 ftReservoir name = Basin 2 Max. Storage = 4,146 cuft

Storage Indication method used.

Wednesday, Apr 16, 2025

Pond No. 2 - Basin 2

Pond Data

Contours - User-defined contour areas. Average end area method used for volume calculation. Begining Elevation = 73.00 ft

Stage / Storage Table

Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)
0.00	73.00	6,711	0	0
1.00	74.00	8,589	7,650	7,650
1.50	74.50	9,587	4,544	12,194

Culvert / Ori	fice Structu	res			Weir Structu	ires			
	[A]	[B]	[C]	[PrfRsr]		[A]	[B]	[C]	[D]
Rise (in)	= 15.00	4.00	0.00	0.00	Crest Len (ft)	= 16.00	3.00	0.00	0.00
Span (in)	= 15.00	10.00	0.00	0.00	Crest El. (ft)	= 74.50	74.00	0.00	0.00
No. Barrels	= 1	1	0	0	Weir Coeff.	= 3.20	3.20	3.33	3.33
Invert El. (ft)	= 71.50	73.33	0.00	0.00	Weir Type	= Riser	Rect		
Length (ft)	= 11.00	0.00	0.00	0.00	Multi-Stage	= Yes	Yes	No	No
Slope (%)	= 2.00	0.00	0.00	n/a	_				
N-Value	= .012	.013	.013	n/a					
Orifice Coeff.	= 0.60	0.60	0.60	0.60	Exfil.(in/hr)	= 0.000 (b)	/ Wet area)		
Multi-Stage	= n/a	Yes	No	No	TW Elev. (ft)	= 0.00	•		

Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s).

Stage	/ Storage /	/ Discharge	Table

Stage ft	Storage cuft	Elevation ft	Clv A cfs	CIv B cfs	Clv C cfs	PrfRsr cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Exfil cfs	User cfs	Total cfs
0.00	0	73.00	0.00	0.00			0.00	0.00					0.000
1.00	7,650	74.00	5.15 oc	0.95 ic			0.00	0.00					0.949
1.50	12,194	74.50	5.15 oc	1.34 ic			0.00	3.39					4.734

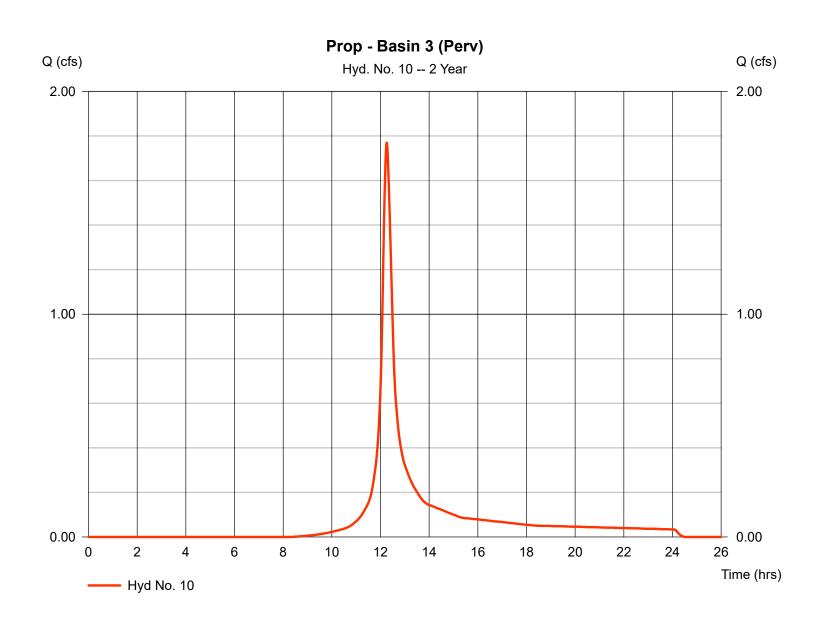
Hydraflow Hydrographs by Intelisolve v9.25

Wednesday, Apr 16, 2025

Hyd. No. 10

Prop - Basin 3 (Perv)

Hydrograph type = SCS Runoff
Storm frequency = 2 yrs
Time interval = 1 min
Drainage area = 1.162 ac
Basin Slope = 0.0 %
Tc method = TR55
Total precip. = 3.34 in


Storm duration = NOAA C.cds

Peak discharge = 1.771 cfs
Time to peak = 12.25 hrs
Hyd. volume = 7,275 cuft
Curve number = 83*

Curve number $= 83^*$ Hydraulic length = 0 ft

Time of conc. (Tc) = 19.00 min
Distribution = Custom
Shape factor = 484

^{*} Composite (Area/CN) = [(0.456 x 79) + (0.706 x 86)] / 1.162

Hyd. No. 10

Prop - Basin 3 (Perv)

<u>Description</u>	<u>A</u>		<u>B</u>		<u>C</u>		<u>Totals</u>
Sheet Flow Manning's n-value Flow length (ft) Two-year 24-hr precip. (in) Land slope (%)	= 0.240 = 100.0 = 3.31 = 3.60		0.011 0.0 0.00 0.00		0.011 0.0 0.00 0.00		
Travel Time (min)	= 11.09	+	0.00	+	0.00	=	11.09
Shallow Concentrated Flow Flow length (ft) Watercourse slope (%) Surface description Average velocity (ft/s)	= 0.00 = 0.00 = Unpaved = 0.00	d	0.00 0.00 Paved 0.00		0.00 0.00 Paved 0.00		
Travel Time (min)	= 0.00	+	0.00	+	0.00	=	0.00
Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value Velocity (ft/s) Flow length (ft)	= 2.50 = 5.39 = 2.40 = 0.240 = 0.57 = 256.0		1.23 3.14 1.40 0.012 7.84 177.0		1.77 4.71 1.20 0.012 7.05 54.0		
Travel Time (min)	= 7.42	+	0.38	+	0.13	=	7.93
Total Travel Time, Tc							19.00 min

Hydraflow Hydrographs by Intelisolve v9.25

Wednesday, Apr 16, 2025

= 7.102 cfs


Hyd. No. 11

Prop - Basin 3 (Imp)

Hydrograph type = SCS Runoff Storm frequency = 2 yrsTime interval = 1 min Drainage area = 1.865 acBasin Slope = 0.0 % Tc method = TR55 Total precip. = 3.34 inStorm duration = NOAA C.cds

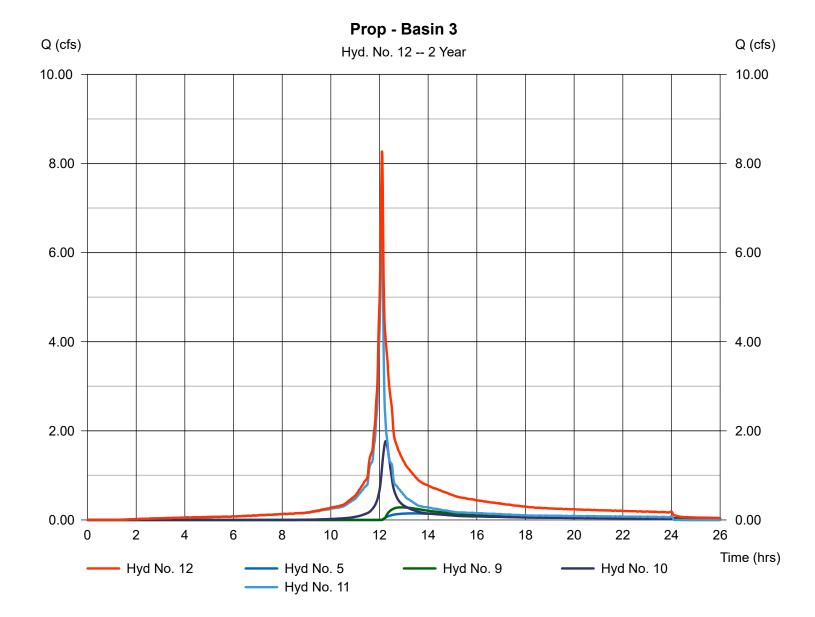
Time to peak = 12.10 hrs
Hyd. volume = 21,034 cuft
Curve number = 98
Hydraulic length = 0 ft
Time of conc. (Tc) = 3.90 min
Distribution = Custom
Shape factor = 484

Peak discharge

Hyd. No. 11

Prop - Basin 3 (Imp)

<u>Description</u>	<u>A</u>		<u>B</u>		<u>C</u>		<u>Totals</u>
Sheet Flow Manning's n-value Flow length (ft) Two-year 24-hr precip. (in) Land slope (%)	= 0.011 = 16.0 = 3.31 = 2.00		0.024 84.0 3.31 3.60		0.011 0.0 0.00 0.00		
Travel Time (min)	= 0.28	+	1.53	+	0.00	=	1.80
Shallow Concentrated Flow Flow length (ft) Watercourse slope (%) Surface description Average velocity (ft/s)	= 133.00 = 1.00 = Paved = 2.03		0.00 0.00 Paved 0.00		0.00 0.00 Paved 0.00		
Travel Time (min)	= 1.09	+	0.00	+	0.00	=	1.09
Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value Velocity (ft/s) Flow length (ft)	= 1.23 = 3.93 = 3.10 = 0.012 = 10.03 = 211.0		1.77 4.71 1.00 0.012 6.44 248.0		0.00 0.00 0.00 0.015 0.00 0.0		
Travel Time (min)	= 0.35	+	0.64	+	0.00	=	0.99
Total Travel Time, Tc							3.90 min


Hydraflow Hydrographs by Intelisolve v9.25

Wednesday, Apr 16, 2025

Hyd. No. 12

Prop - Basin 3

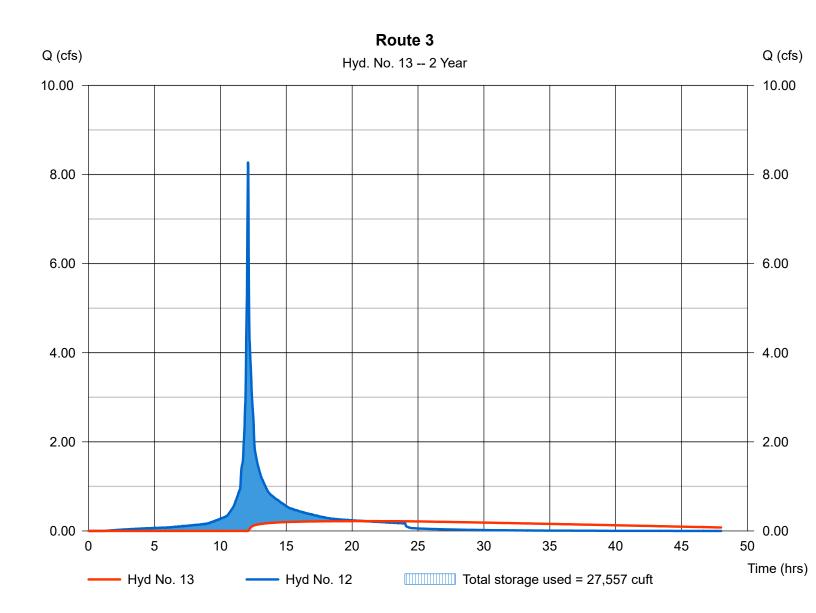
Hydrograph type = Combine Storm frequency = 2 yrs Time interval = 1 min Inflow hyds. = 5, 9, 10, 11 Peak discharge = 8.271 cfs
Time to peak = 12.10 hrs
Hyd. volume = 37,247 cuft
Contrib. drain. area = 3.027 ac

Hydraflow Hydrographs by Intelisolve v9.25

Wednesday, Apr 16, 2025

Hyd. No. 13

Route 3


Hydrograph type = Reservoir Storm frequency = 2 yrs Time interval = 1 min

Inflow hyd. No. = 12 - Prop - Basin 3

Reservoir name = Basin 3

Peak discharge = 0.220 cfs
Time to peak = 20.90 hrs
Hyd. volume = 21,746 cuft
Max. Elevation = 68.74 ft
Max. Storage = 27,557 cuft

Storage Indication method used.

Pond Report

Hydraflow Hydrographs by Intelisolve v9.25

Wednesday, Apr 16, 2025

Pond No. 3 - Basin 3

Pond Data

Contours - User-defined contour areas. Average end area method used for volume calculation. Begining Elevation = 67.00 ft

Stage / Storage Table

Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)
0.00	67.00	15,617	0	0
1.00	68.00	15,825	15,721	15,721
2.00	69.00	16,031	15,928	31,649
3.00	70.00	16,236	16,134	47,783
4.00	71.00	16,439	16,338	64,120

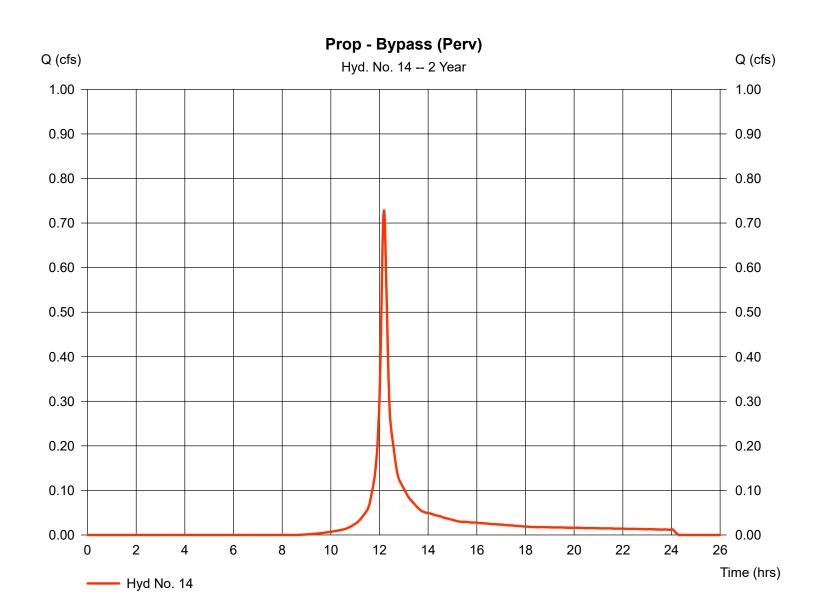
Culvert / Orif	fice Structui		Weir Structures							
	[A]	[B]	[C]	[PrfRsr]		[A]	[B]	[C]	[D]	
Rise (in)	= 24.00	3.00	5.00	0.00	Crest Len (ft)	= 16.00	3.00	0.00	Inactive	
Span (in)	= 24.00	3.00	32.00	0.00	Crest El. (ft)	= 70.50	70.00	0.00	0.00	
No. Barrels	= 1	1	3	0	Weir Coeff.	= 3.20	3.20	3.33	3.20	
Invert El. (ft)	= 66.00	67.75	69.00	0.00	Weir Type	= Riser	Rect			
Length (ft)	= 37.00	0.00	0.00	0.00	Multi-Stage	= Yes	Yes	No	Yes	
Slope (%)	= 3.00	0.00	0.00	n/a						
N-Value	= .012	.013	.013	n/a						
Orifice Coeff.	= 0.60	0.60	0.60	0.60	Exfil.(in/hr)	= 0.000 (by	Wet area)			
Multi-Stage	= n/a	Yes	Yes	No	TW Elev. (ft)	= 0.00				

Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s).

Stage / Storage / Discharge Table

Stage ft	Storage cuft	Elevation ft	CIv A cfs	CIv B cfs	Clv C cfs	PrfRsr cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Exfil cfs	User cfs	Total cfs
0.00	0	67.00	0.00	0.00	0.00		0.00	0.00		0.00			0.000
1.00	15,721	68.00	5.35 ic	0.08 ic	0.00		0.00	0.00		0.00			0.084
2.00	31,649	69.00	5.35 ic	0.25 ic	0.00		0.00	0.00		0.00			0.251
3.00	47,783	70.00	14.63 ic	0.34 ic	14.28 ic		0.00	0.00		0.00			14.62
4.00	64,120	71.00	29.33 ic	0.12 ic	7.84 ic		15.08 s	6.30 s		0.00			29.33

Hydraflow Hydrographs by Intelisolve v9.25


Wednesday, Apr 16, 2025

Hyd. No. 14

Prop - Bypass (Perv)

Hydrograph type = SCS Runoff Peak discharge = 0.728 cfsStorm frequency = 2 yrsTime to peak $= 12.18 \, hrs$ Time interval = 1 min Hyd. volume = 2,502 cuftDrainage area = 0.424 acCurve number = 82* Basin Slope = 0.0 % Hydraulic length = 0 ft= TR55 Tc method Time of conc. (Tc) = 11.80 min Total precip. = 3.34 inDistribution = Custom Storm duration = NOAA C.cds Shape factor = 484

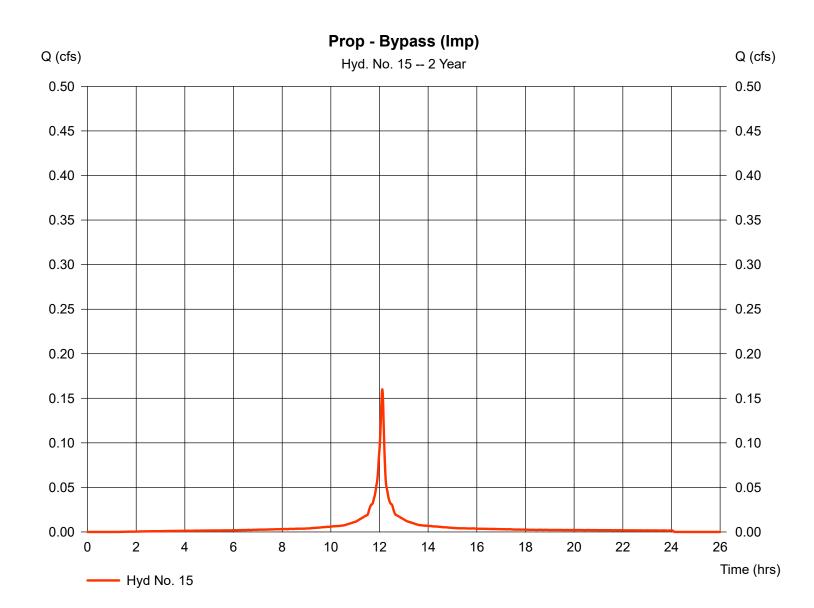
^{*} Composite (Area/CN) = [(0.214 x 79) + (0.210 x 86)] / 0.424

Hyd. No. 14

Prop - Bypass (Perv)

<u>Description</u>	<u>A</u>	<u>A</u>		<u>B</u>			<u>Totals</u>
Sheet Flow Manning's n-value Flow length (ft) Two-year 24-hr precip. (in) Land slope (%)	= 0.24 = 100 = 3.3 = 7.5).0 1	0.011 0.0 0.00 0.00		0.011 0.0 0.00 0.00		
Travel Time (min)	= 8.2	7 +	0.00	+	0.00	=	8.27
Shallow Concentrated Flow Flow length (ft) Watercourse slope (%) Surface description Average velocity (ft/s)	= 2.3	0 paved 9	0.00 0.00 Paved 0.00		0.00 0.00 Paved 0.00		
Travel Time (min)	= 3.5	3 +	0.00	+	0.00	=	3.53
Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value Velocity (ft/s) Flow length (ft)	= 7.0 = 9.4 = 2.0 = 0.0 = 13. = 10.	3 0 13 37	0.00 0.00 0.00 0.015 0.00 0.0		0.00 0.00 0.00 0.015 0.00 0.0		
Travel Time (min)	= 0.0	1 +	0.00	+	0.00	=	0.01
Total Travel Time, Tc							11.80 min

Hydraflow Hydrographs by Intelisolve v9.25


Wednesday, Apr 16, 2025

Hyd. No. 15

Prop - Bypass (Imp)

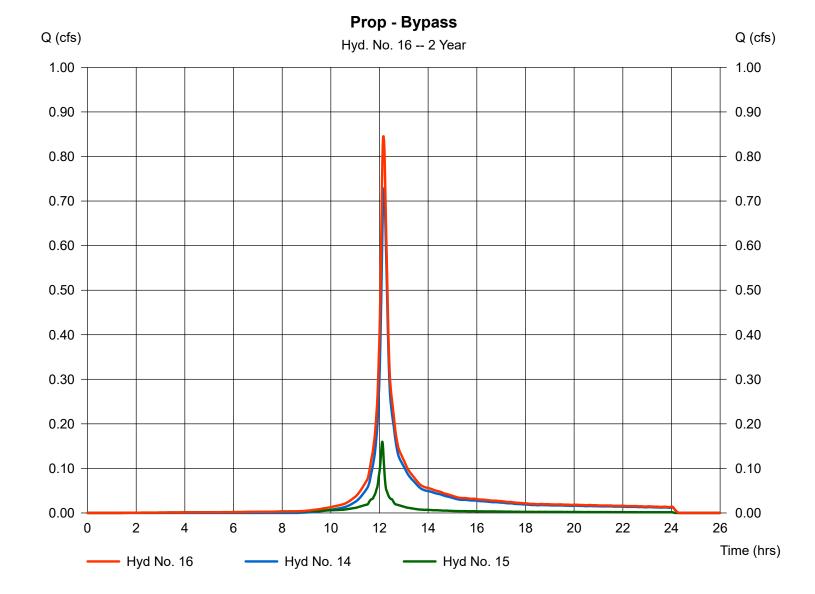
Hydrograph type = SCS Runoff Storm frequency = 2 yrsTime interval = 1 min Drainage area = 0.044 acBasin Slope = 0.0 % Tc method = TR55 Total precip. = 3.34 inStorm duration = NOAA C.cds

Peak discharge = 0.160 cfsTime to peak $= 12.12 \, hrs$ Hyd. volume = 512 cuft Curve number = 98 Hydraulic length = 0 ftTime of conc. (Tc) $= 6.50 \, \text{min}$ Distribution = Custom = 484 Shape factor

Hyd. No. 15

Prop - Bypass (Imp)

<u>Description</u>	<u>A</u>		<u>B</u>		<u>C</u>		<u>Totals</u>
Sheet Flow Manning's n-value Flow length (ft) Two-year 24-hr precip. (in) Land slope (%)	= 0.011 = 84.0 = 3.31 = 2.00		0.240 16.0 3.31 7.50		0.011 0.0 0.00 0.00		
Travel Time (min)	= 1.04	+	1.91	+	0.00	=	2.95
Shallow Concentrated Flow Flow length (ft) Watercourse slope (%) Surface description Average velocity (ft/s)	= 507.00 = 2.20 = Unpave = 2.39	d	0.00 0.00 Paved 0.00		0.00 0.00 Paved 0.00		
Travel Time (min)	= 3.53	+	0.00	+	0.00	=	3.53
Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value Velocity (ft/s) Flow length (ft)	= 7.07 = 9.43 = 2.00 = 0.013 = 13.37 = 10.0		0.00 0.00 0.00 0.015 0.00 0.0		0.00 0.00 0.00 0.015 0.00 0.0		
Travel Time (min)	= 0.01	+	0.00	+	0.00	=	0.01
Total Travel Time, Tc							6.50 min

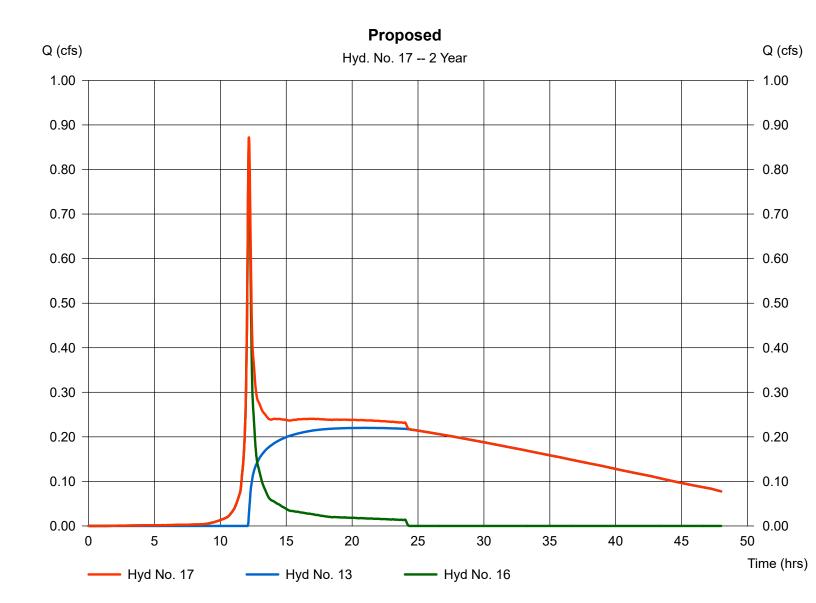

Hydraflow Hydrographs by Intelisolve v9.25

Wednesday, Apr 16, 2025

Hyd. No. 16

Prop - Bypass

Hydrograph type = Combine Storm frequency = 2 yrs Time interval = 1 min Inflow hyds. = 14, 15 Peak discharge = 0.845 cfs
Time to peak = 12.17 hrs
Hyd. volume = 3,014 cuft
Contrib. drain. area = 0.468 ac


Hydraflow Hydrographs by Intelisolve v9.25

Wednesday, Apr 16, 2025

Hyd. No. 17

Proposed

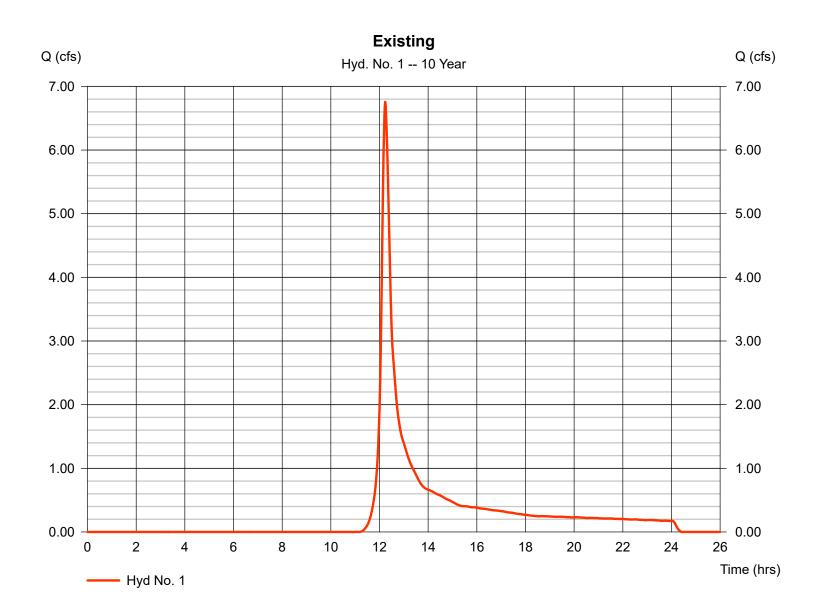
Hydrograph type = Combine Storm frequency = 2 yrs Time interval = 1 min Inflow hyds. = 13, 16 Peak discharge = 0.872 cfs Time to peak = 12.17 hrs Hyd. volume = 24,759 cuft Contrib. drain. area = 0.000 ac

Hydrograph Summary Report

Hydraflow Hydrographs by Intelisolve v9.25

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph description
1	SCS Runoff	6.757	1	734	27,591				Existing
2	SCS Runoff	1.290	1	729	4,049				Prop - Basin 1 (Perv)
3	SCS Runoff	2.570	1	726	7,595				Prop - Basin 1 (Imp)
4	Combine	3.734	1	726	11,644	2, 3			Prop - Basin 1
5	Reservoir	0.904	1	742	8,744	4	76.60	6,394	Route 1
6	SCS Runoff	1.551	1	732	5,625				Prop - Basin 2 (Perv)
7	SCS Runoff	1.647	1	731	6,899				Prop - Basin 2 (Imp)
8	Combine	3.195	1	732	12,524	6, 7			Prop - Basin 2
9	Reservoir	0.785	1	757	10,214	8	73.84	6,450	Route 2
10	SCS Runoff	3.337	1	735	13,809				Prop - Basin 3 (Perv)
11	SCS Runoff	10.93	1	726	32,990				Prop - Basin 3 (Imp)
12	Combine	13.67	1	726	65,757	5, 9, 10,			Prop - Basin 3
13	Reservoir	2.505	1	784	48,382	11 12	69.19	34,669	Route 3
14	SCS Runoff	1.390	1	731	4,814				Prop - Bypass (Perv)
15	SCS Runoff	0.246	1	727	803				Prop - Bypass (Imp)
16	Combine	1.574	1	730	5,617	14, 15			Prop - Bypass
17	Combine	2.699	1	782	54,000	13, 16			Proposed
21-2	210 (C).gpw				Return F	Period: 10 Y	ear	Wednesda	y, Apr 16, 2025

Hydraflow Hydrographs by Intelisolve v9.25


Wednesday, Apr 16, 2025

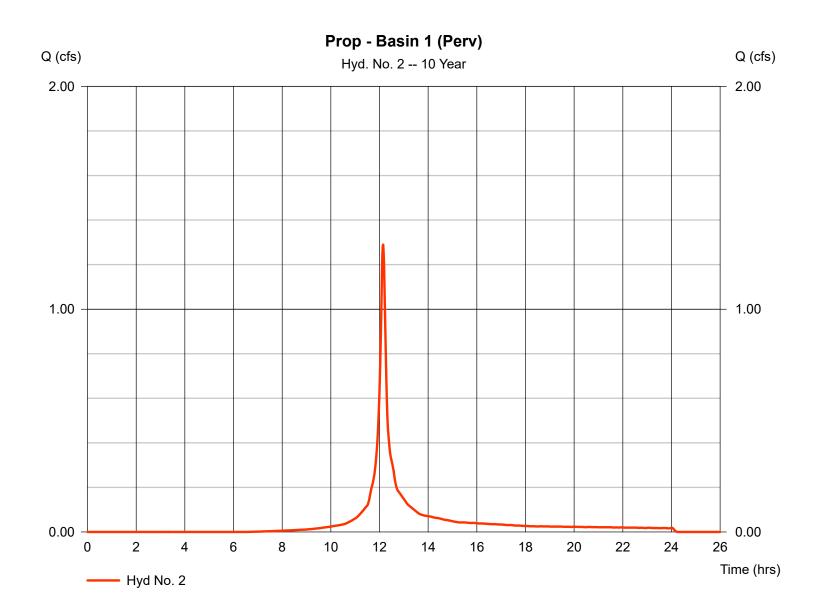
Hyd. No. 1

Existing

Hydrograph type = SCS Runoff Peak discharge = 6.757 cfsTime to peak Storm frequency = 10 yrs $= 12.23 \, hrs$ Time interval = 1 min Hyd. volume = 27,591 cuft Drainage area = 5.229 acCurve number = 61* Basin Slope = 0.0 % Hydraulic length = 0 ftTc method = TR55 Time of conc. (Tc) $= 16.40 \, \text{min}$ Total precip. = 5.11 inDistribution = Custom = 484 Storm duration = NOAA C.cds Shape factor

^{*} Composite (Area/CN) = [(2.998 x 55) + (2.231 x 70)] / 5.229

Hydraflow Hydrographs by Intelisolve v9.25


Wednesday, Apr 16, 2025

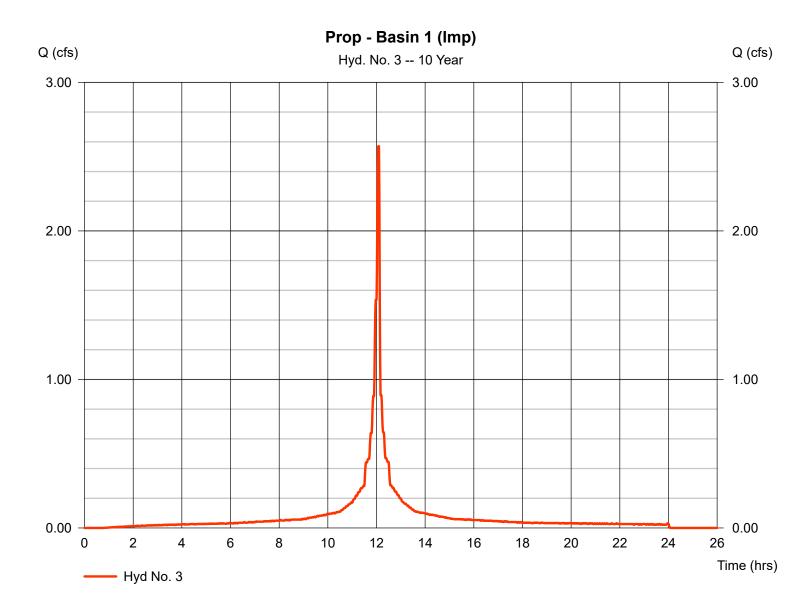
Hyd. No. 2

Prop - Basin 1 (Perv)

Hydrograph type = SCS Runoff Peak discharge = 1.290 cfsStorm frequency = 10 yrsTime to peak $= 12.15 \, hrs$ Time interval = 1 min Hyd. volume = 4,049 cuftDrainage area = 0.351 acCurve number = 82* Basin Slope = 0.0 % Hydraulic length = 0 ftTc method = TR55 Time of conc. (Tc) $= 9.20 \, \text{min}$ Total precip. = 5.11 inDistribution = Custom Storm duration = NOAA C.cds Shape factor = 484

^{*} Composite (Area/CN) = [(0.196 x 79) + (0.155 x 86)] / 0.351

Hydraflow Hydrographs by Intelisolve v9.25

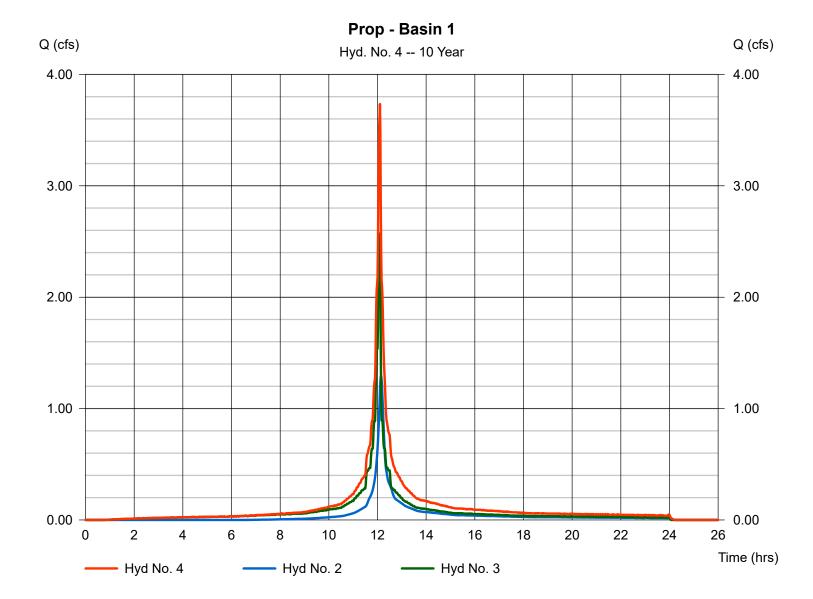

Wednesday, Apr 16, 2025

Hyd. No. 3

Prop - Basin 1 (Imp)

Hydrograph type = SCS Runoff Storm frequency = 10 yrsTime interval = 1 min Drainage area = 0.458 acBasin Slope = 0.0 % Tc method = TR55 Total precip. = 5.11 inStorm duration = NOAA C.cds

Peak discharge = 2.570 cfsTime to peak = 12.10 hrsHyd. volume = 7,595 cuftCurve number = 98 Hydraulic length = 0 ftTime of conc. (Tc) $= 1.60 \, \text{min}$ Distribution = Custom = 484 Shape factor


Hydraflow Hydrographs by Intelisolve v9.25

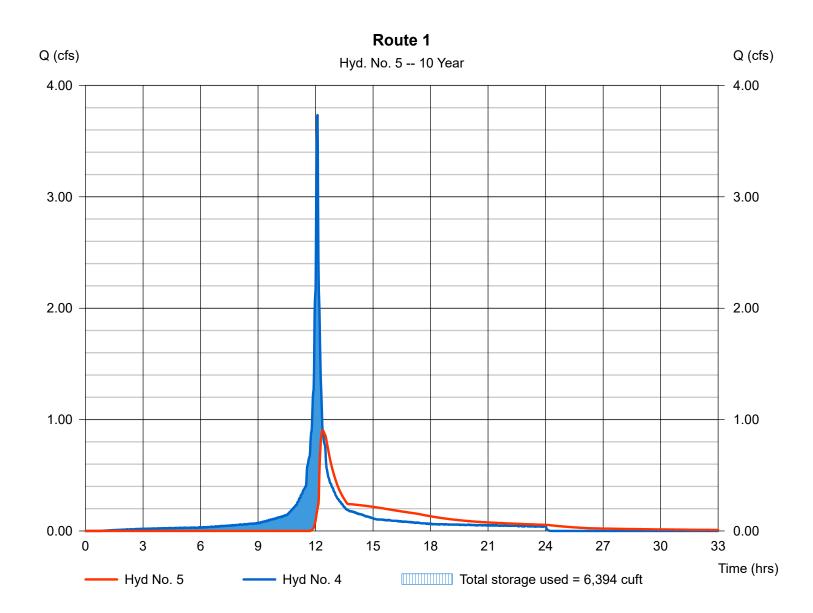
Wednesday, Apr 16, 2025

Hyd. No. 4

Prop - Basin 1

Hydrograph type = Combine Storm frequency = 10 yrs Time interval = 1 min Inflow hyds. = 2, 3 Peak discharge = 3.734 cfs Time to peak = 12.10 hrs Hyd. volume = 11,644 cuft Contrib. drain. area = 0.809 ac

Hydraflow Hydrographs by Intelisolve v9.25


Wednesday, Apr 16, 2025

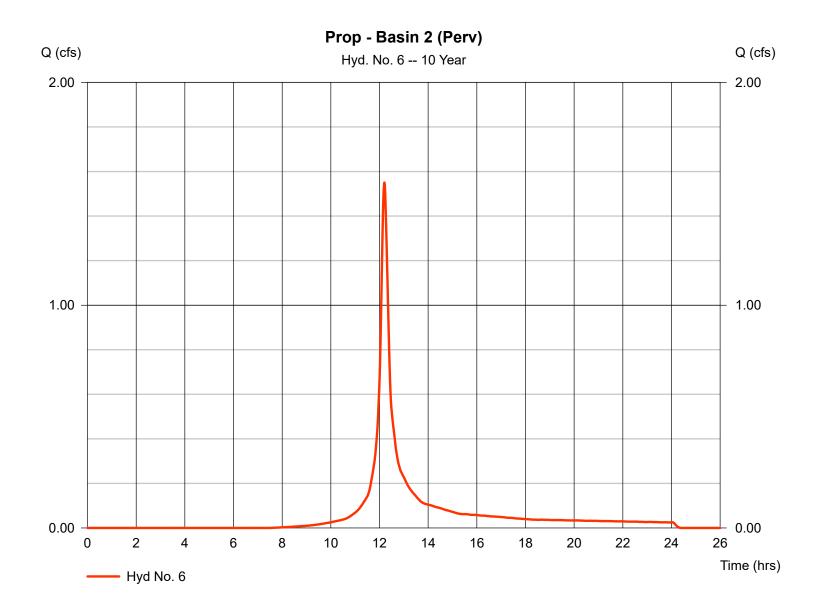
Hyd. No. 5

Route 1

Hydrograph type = Reservoir Peak discharge = 0.904 cfsStorm frequency Time to peak = 10 yrs= 12.37 hrsTime interval = 1 min Hyd. volume = 8,744 cuft Inflow hyd. No. = 4 - Prop - Basin 1 Max. Elevation = 76.60 ftReservoir name = Basin 1 Max. Storage = 6,394 cuft

Storage Indication method used.

Hydraflow Hydrographs by Intelisolve v9.25


Wednesday, Apr 16, 2025

Hyd. No. 6

Prop - Basin 2 (Perv)

Hydrograph type = SCS Runoff Storm frequency = 10 yrsTime interval = 1 min Drainage area = 0.535 acBasin Slope = 0.0 % Tc method = TR55 Total precip. = 5.11 inStorm duration = NOAA C.cds Peak discharge = 1.551 cfs
Time to peak = 12.20 hrs
Hyd. volume = 5,625 cuft
Curve number = 79
Hydraulic length = 0 ft
Time of conc. (Tc) = 14.10 min

Distribution = Custom Shape factor = 484

Hydraflow Hydrographs by Intelisolve v9.25

Wednesday, Apr 16, 2025

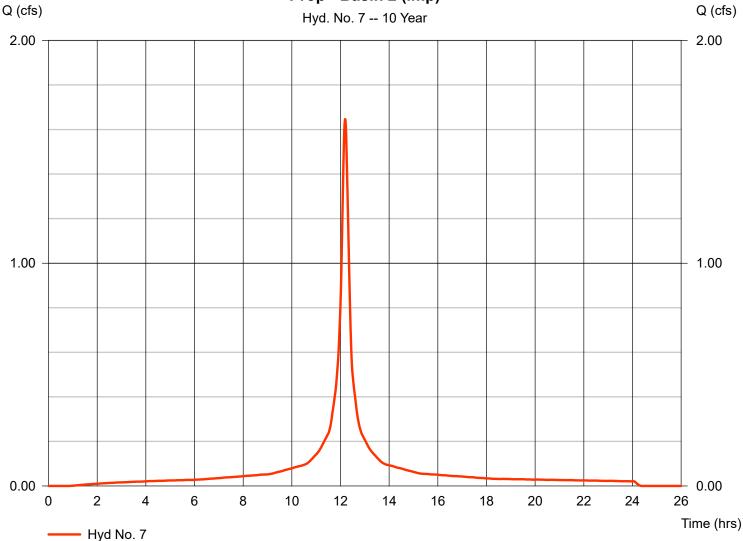
Hyd. No. 7

Prop - Basin 2 (Imp)

Hydrograph type = SCS Runoff
Storm frequency = 10 yrs
Time interval = 1 min
Drainage area = 0.390 ac
Basin Slope = 0.0 %
Tc method = TR55
Total precip. = 5.11 in

Storm duration = NOAA C.cds

Peak discharge = 1.647 cfs
Time to peak = 12.18 hrs
Hyd. volume = 6,899 cuft
Curve number = 98

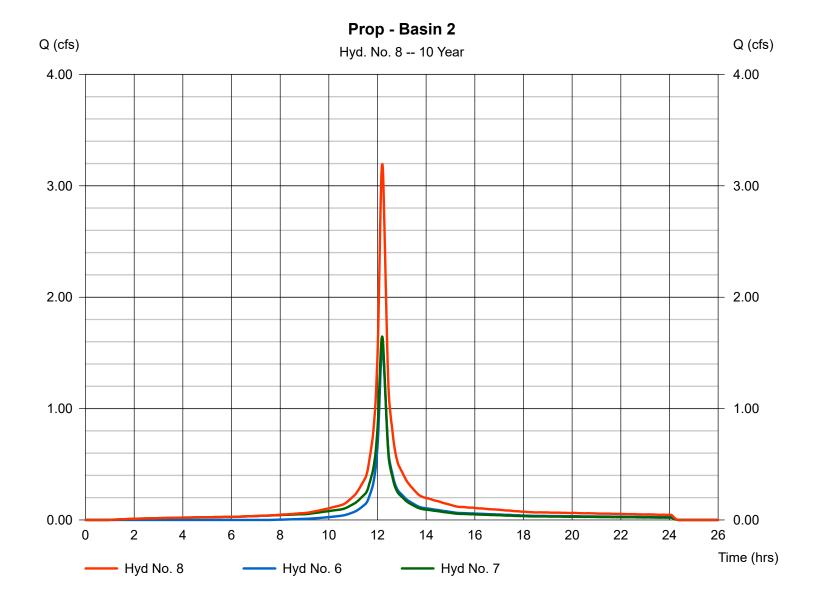

Hydraulic length = 0 ft
Time of conc. (Tc) = 13.70 min
Distribution = Custom

= 484

Prop - Basin 2 (Imp)

Hvd No. 7 -- 10 Year

Shape factor


Hydraflow Hydrographs by Intelisolve v9.25

Wednesday, Apr 16, 2025

Hyd. No. 8

Prop - Basin 2

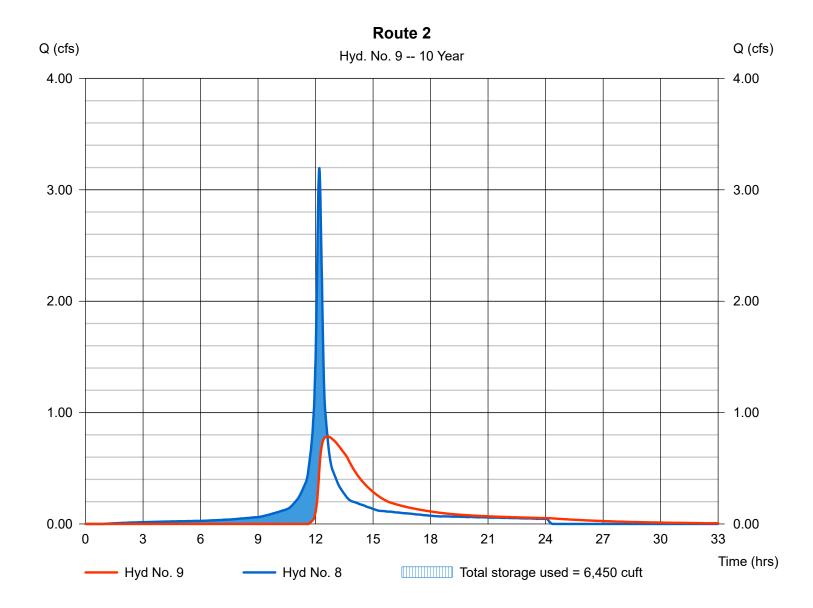
Hydrograph type = Combine Storm frequency = 10 yrs Time interval = 1 min Inflow hyds. = 6, 7 Peak discharge = 3.195 cfs
Time to peak = 12.20 hrs
Hyd. volume = 12,524 cuft
Contrib. drain. area = 0.925 ac

Hydraflow Hydrographs by Intelisolve v9.25

Wednesday, Apr 16, 2025

Hyd. No. 9

Route 2


Hydrograph type = Reservoir Storm frequency = 10 yrs Time interval = 1 min

Inflow hyd. No. = 8 - Prop - Basin 2

Reservoir name = Basin 2

Peak discharge = 0.785 cfs
Time to peak = 12.62 hrs
Hyd. volume = 10,214 cuft
Max. Elevation = 73.84 ft
Max. Storage = 6,450 cuft

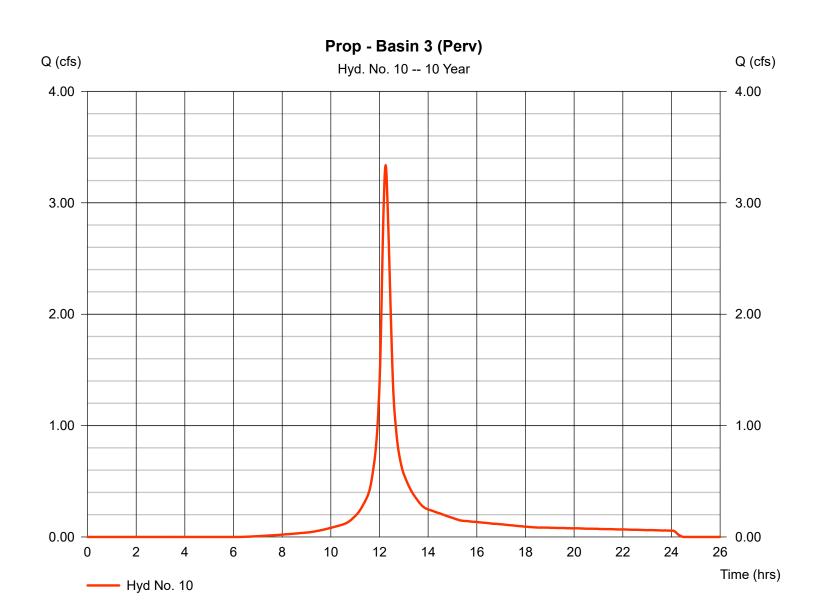
Storage Indication method used.

Hydraflow Hydrographs by Intelisolve v9.25

Wednesday, Apr 16, 2025

= 484

Hyd. No. 10


Storm duration

Prop - Basin 3 (Perv)

Hydrograph type = SCS Runoff Peak discharge = 3.337 cfsStorm frequency Time to peak = 10 yrs $= 12.25 \, hrs$ Time interval = 1 min Hyd. volume = 13,809 cuftDrainage area = 1.162 acCurve number = 83* Basin Slope = 0.0 % Hydraulic length = 0 ftTc method = TR55 Time of conc. (Tc) $= 19.00 \, \text{min}$ Total precip. = 5.11 inDistribution = Custom

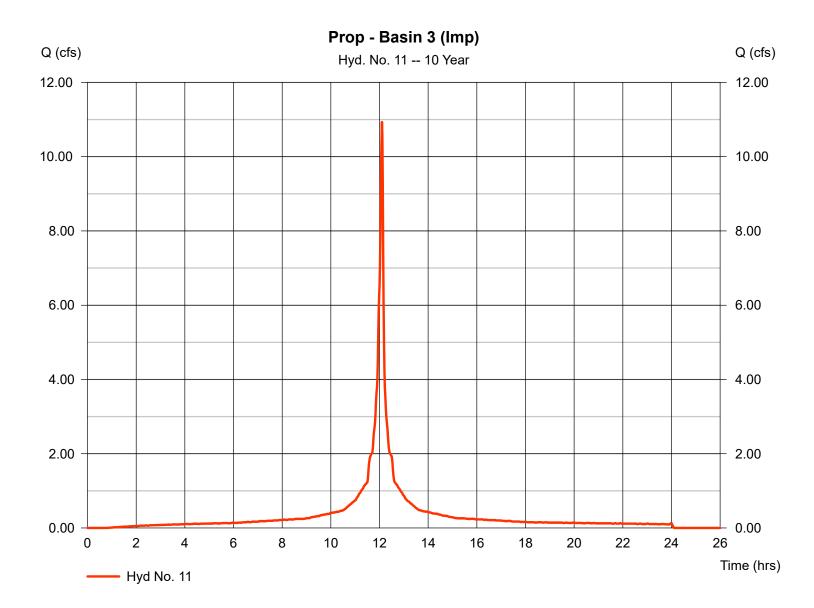
Shape factor

= NOAA C.cds

^{*} Composite (Area/CN) = [(0.456 x 79) + (0.706 x 86)] / 1.162

Hydraflow Hydrographs by Intelisolve v9.25

Wednesday, Apr 16, 2025

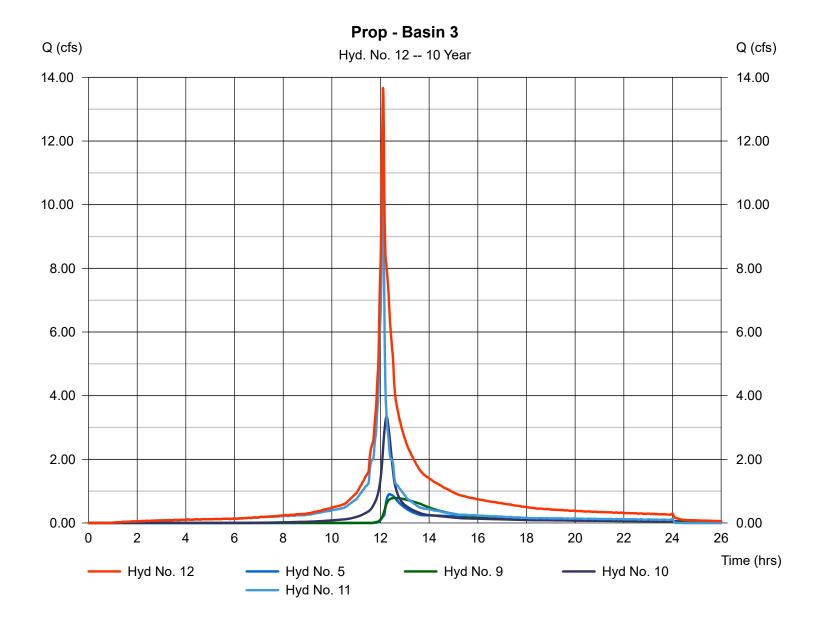

Hyd. No. 11

Prop - Basin 3 (Imp)

Hydrograph type = SCS Runoff
Storm frequency = 10 yrs
Time interval = 1 min
Drainage area = 1.865 ac
Basin Slope = 0.0 %
Tc method = TR55
Total precip. = 5.11 in

Storm duration = NOAA C.cds

Peak discharge = 10.93 cfsTime to peak = 12.10 hrsHyd. volume = 32,990 cuftCurve number = 98 Hydraulic length = 0 ftTime of conc. (Tc) $= 3.90 \, \text{min}$ Distribution = Custom = 484 Shape factor


Hydraflow Hydrographs by Intelisolve v9.25

Wednesday, Apr 16, 2025

Hyd. No. 12

Prop - Basin 3

Hydrograph type = Combine Storm frequency = 10 yrs Time interval = 1 min Inflow hyds. = 5, 9, 10, 11 Peak discharge = 13.67 cfs Time to peak = 12.10 hrs Hyd. volume = 65,757 cuft Contrib. drain. area = 3.027 ac

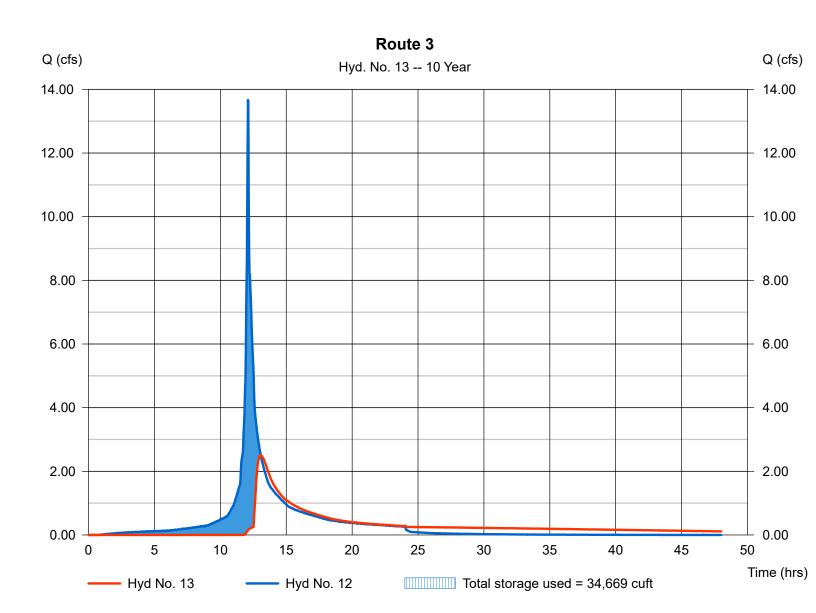
Hydraflow Hydrographs by Intelisolve v9.25

Wednesday, Apr 16, 2025

= 2.505 cfs

 $= 13.07 \, hrs$

= 48,382 cuft


Hyd. No. 13

Route 3

Hydrograph type= ReservoirPeak dischargeStorm frequency= 10 yrsTime to peakTime interval= 1 minHyd. volume

Inflow hyd. No. = 12 - Prop - Basin 3 Max. Elevation = 69.19 ft
Reservoir name = Basin 3 Max. Storage = 34,669 cuft

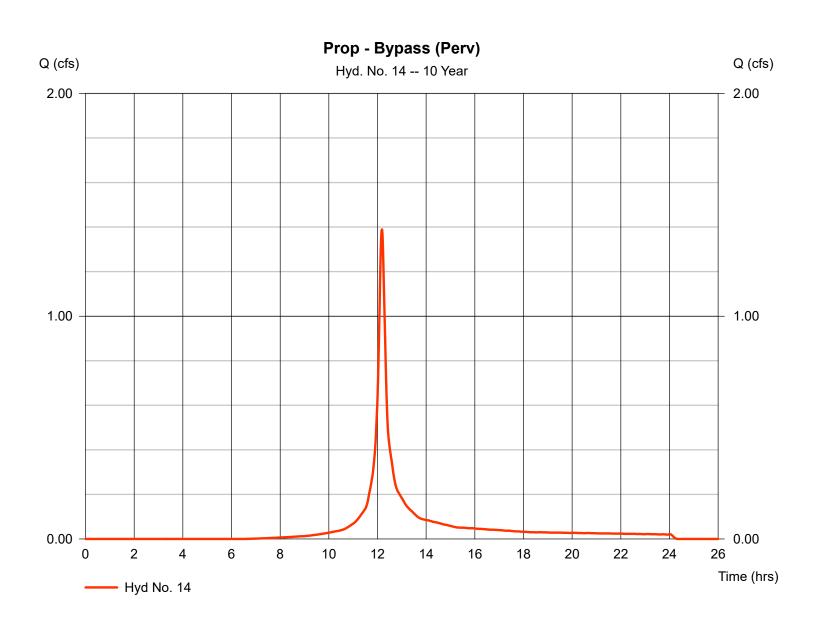
Storage Indication method used.

Hydraflow Hydrographs by Intelisolve v9.25

Wednesday, Apr 16, 2025

Hyd. No. 14

Prop - Bypass (Perv)


Hydrograph type = SCS Runoff Peak discharge = 1.390 cfsStorm frequency = 10 yrsTime to peak = 12.18 hrsTime interval = 1 min Hyd. volume = 4,814 cuft Drainage area = 0.424 acCurve number = 82* Basin Slope = 0.0 % Hydraulic length = 0 ftTc method = TR55 Time of conc. (Tc) = 11.80 min

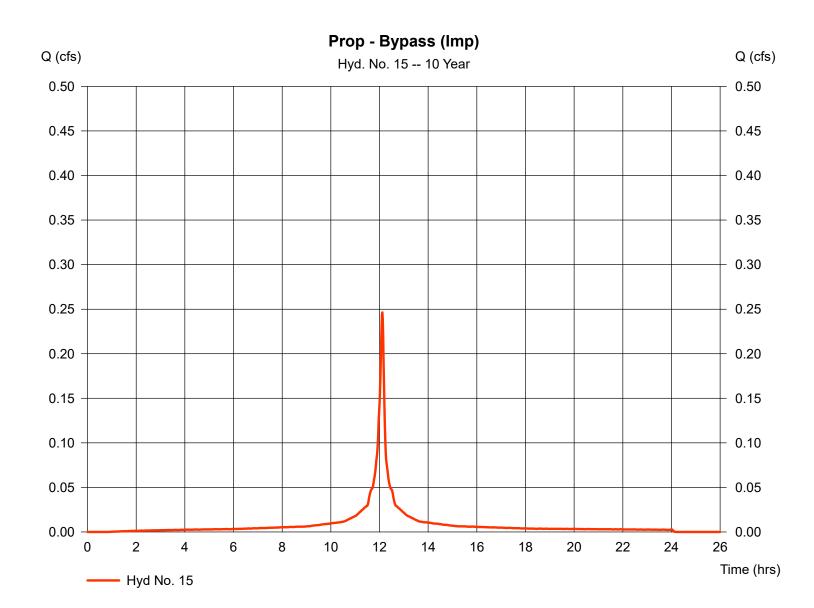
Total precip. = 5.11 in

Storm duration = NOAA_C.cds

Distribution = Custom Shape factor = 484

^{*} Composite (Area/CN) = [(0.214 x 79) + (0.210 x 86)] / 0.424

Hydraflow Hydrographs by Intelisolve v9.25


Wednesday, Apr 16, 2025

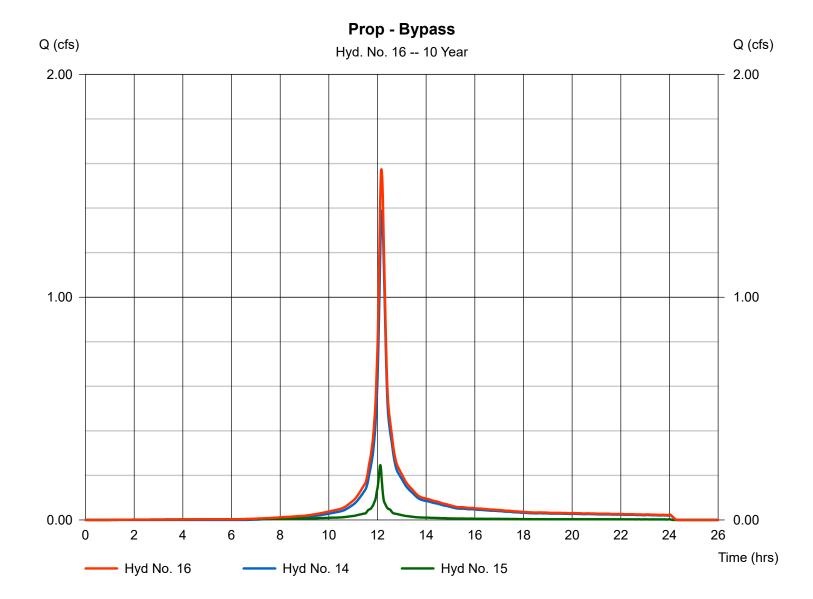
Hyd. No. 15

Prop - Bypass (Imp)

Hydrograph type = SCS Runoff Storm frequency = 10 yrsTime interval = 1 min Drainage area = 0.044 acBasin Slope = 0.0 % Tc method = TR55 Total precip. = 5.11 inStorm duration = NOAA C.cds

Peak discharge = 0.246 cfsTime to peak $= 12.12 \, hrs$ Hyd. volume = 803 cuft Curve number = 98 Hydraulic length = 0 ftTime of conc. (Tc) $= 6.50 \, \text{min}$ Distribution = Custom = 484 Shape factor

Hydraflow Hydrographs by Intelisolve v9.25

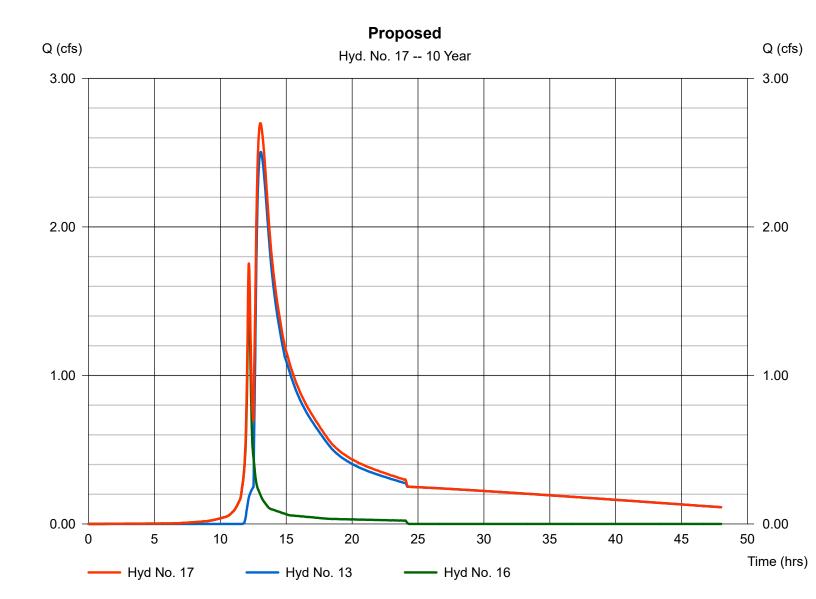

Wednesday, Apr 16, 2025

Hyd. No. 16

Prop - Bypass

Hydrograph type = Combine Storm frequency = 10 yrs Time interval = 1 min Inflow hyds. = 14, 15

Peak discharge = 1.574 cfs
Time to peak = 12.17 hrs
Hyd. volume = 5,617 cuft
Contrib. drain. area = 0.468 ac


Hydraflow Hydrographs by Intelisolve v9.25

Wednesday, Apr 16, 2025

Hyd. No. 17

Proposed

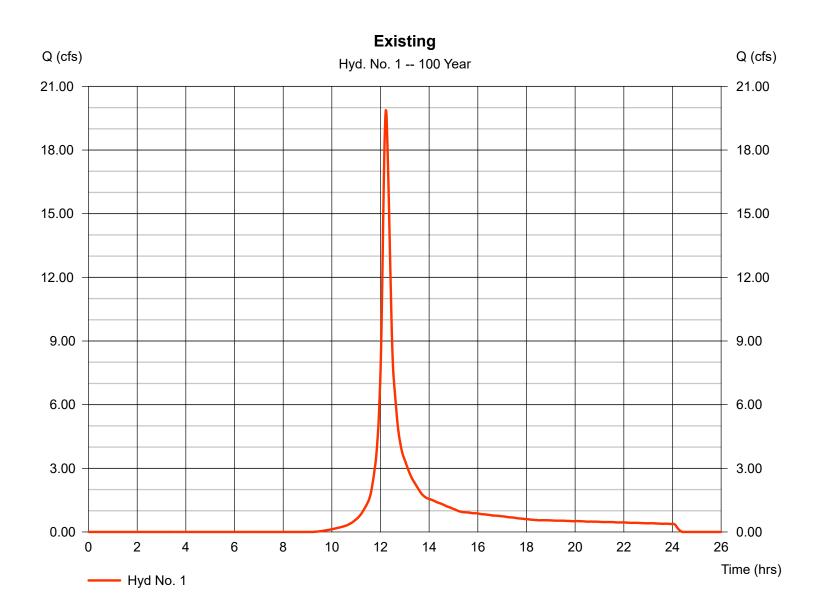
Hydrograph type = Combine Storm frequency = 10 yrs Time interval = 1 min Inflow hyds. = 13, 16 Peak discharge = 2.699 cfs Time to peak = 13.03 hrs Hyd. volume = 54,000 cuft Contrib. drain. area = 0.000 ac

Hydrograph Summary Report

Hydraflow Hydrographs by Intelisolve v9.25

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph description
1	SCS Runoff	19.88	1	733	76,016				Existing
2	SCS Runoff	2.548	1	729	8,267				Prop - Basin 1 (Perv)
3	SCS Runoff	4.369	1	726	13,123				Prop - Basin 1 (Imp)
4	Combine	6.701	1	726	21,391	2, 3			Prop - Basin 1
5	Reservoir	4.928	1	728	18,485	4	76.88	8,040	Route 1
6	SCS Runoff	3.205	1	732	11,895				Prop - Basin 2 (Perv)
7	SCS Runoff	2.801	1	731	11,920				Prop - Basin 2 (Imp)
8	Combine	6.001	1	732	23,815	6, 7			Prop - Basin 2
9	Reservoir	2.699	1	745	21,506	8	74.29	10,291	Route 2
10	SCS Runoff	6.548	1	735	27,879				Prop - Basin 3 (Perv)
11	SCS Runoff	18.59	1	726	57,002				Prop - Basin 3 (Imp)
12	Combine	28.58	1	727	124,873	5, 9, 10,			Prop - Basin 3
13	Reservoir	13.80	1	743	107,168	11 12	69.91	46,361	Route 3
14	SCS Runoff	2.751	1	731	9,830				Prop - Bypass (Perv)
15	SCS Runoff	0.419	1	727	1,387				Prop - Bypass (Imp)
16	Combine	3.073	1	730	11,217	14, 15			Prop - Bypass
17	Combine	15.49	1	736	118,385	13, 16			Proposed
21-210 (C).gpw					Return P	Period: 100	Year	Wednesday	y, Apr 16, 2025

Hydraflow Hydrographs by Intelisolve v9.25


Wednesday, Apr 16, 2025

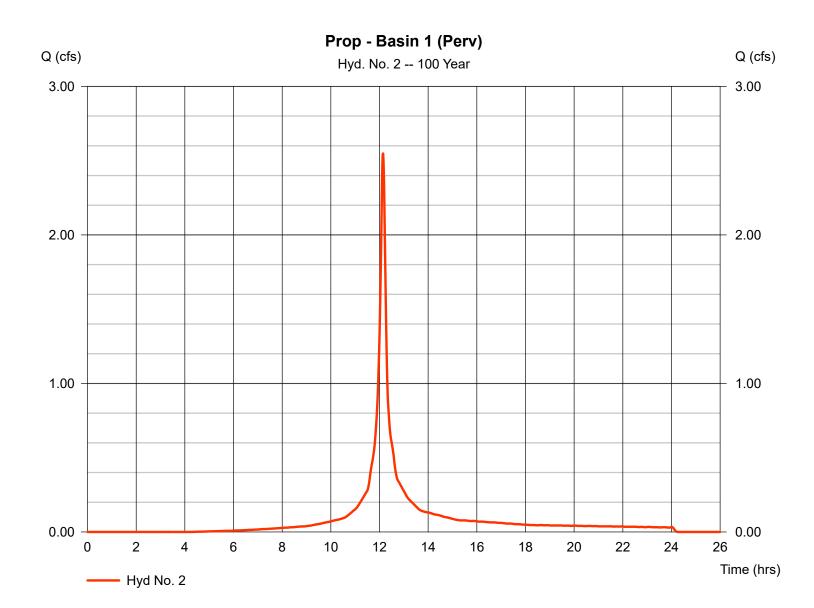
Hyd. No. 1

Existing

Hydrograph type = SCS Runoff Peak discharge = 19.88 cfsStorm frequency Time to peak = 100 yrs $= 12.22 \, hrs$ Time interval = 1 min Hyd. volume = 76,016 cuft Drainage area = 5.229 acCurve number = 61* Basin Slope = 0.0 % Hydraulic length = 0 ftTc method = TR55 Time of conc. (Tc) = 16.40 min Distribution Total precip. = 8.66 in= Custom = 484 Storm duration = NOAA C.cds Shape factor

^{*} Composite (Area/CN) = [(2.998 x 55) + (2.231 x 70)] / 5.229

Hydraflow Hydrographs by Intelisolve v9.25


Wednesday, Apr 16, 2025

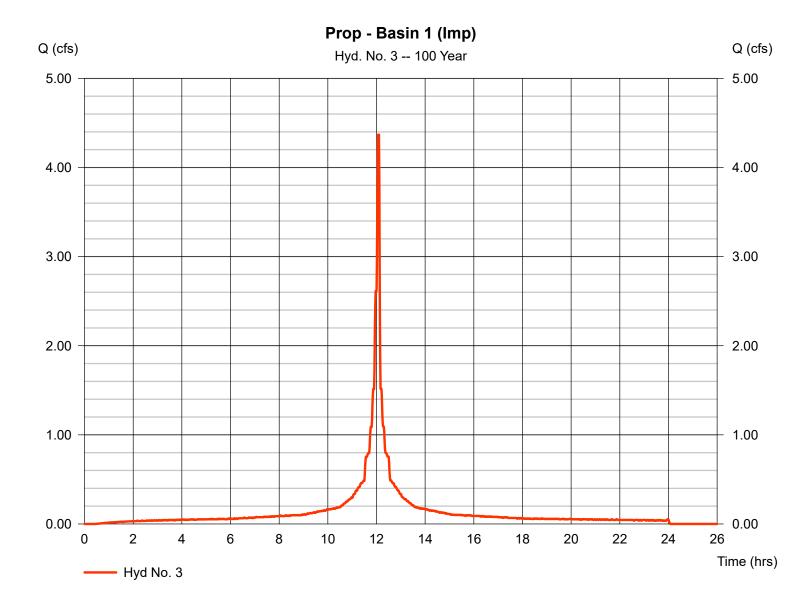
Hyd. No. 2

Prop - Basin 1 (Perv)

Hydrograph type = SCS Runoff Peak discharge = 2.548 cfsStorm frequency = 100 yrsTime to peak $= 12.15 \, hrs$ Time interval = 1 min Hyd. volume = 8,267 cuft Drainage area = 0.351 acCurve number = 82* Basin Slope = 0.0 % Hydraulic length = 0 ftTc method = TR55 Time of conc. (Tc) $= 9.20 \, \text{min}$ Total precip. = 8.66 inDistribution = Custom = 484 Storm duration = NOAA C.cds Shape factor

^{*} Composite (Area/CN) = [(0.196 x 79) + (0.155 x 86)] / 0.351

Hydraflow Hydrographs by Intelisolve v9.25

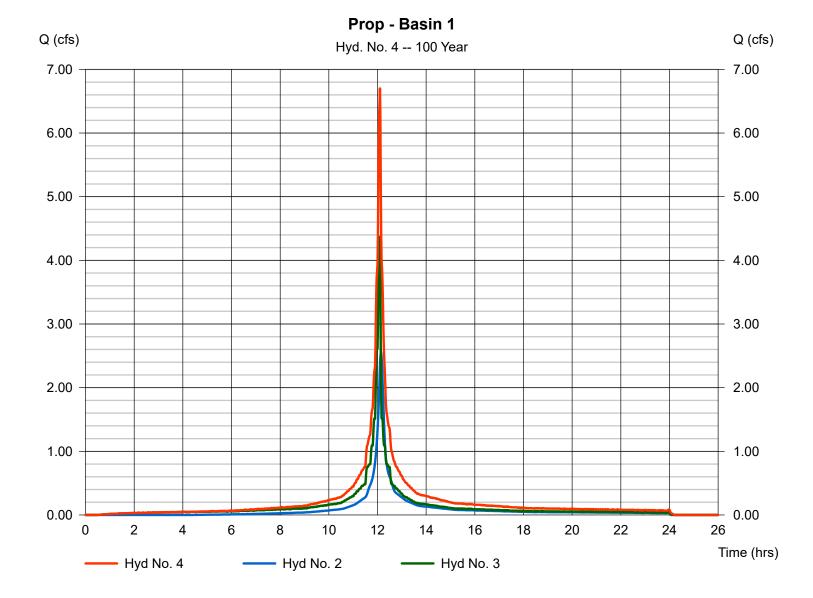

Wednesday, Apr 16, 2025

Hyd. No. 3

Prop - Basin 1 (Imp)

Hydrograph type = SCS Runoff Storm frequency = 100 yrsTime interval = 1 min Drainage area = 0.458 acBasin Slope = 0.0 % Tc method = TR55 Total precip. = 8.66 inStorm duration = NOAA C.cds

Peak discharge = 4.369 cfsTime to peak = 12.10 hrsHyd. volume = 13,123 cuft Curve number = 98 Hydraulic length = 0 ftTime of conc. (Tc) $= 1.60 \, \text{min}$ Distribution = Custom = 484 Shape factor


Hydraflow Hydrographs by Intelisolve v9.25

Wednesday, Apr 16, 2025

Hyd. No. 4

Prop - Basin 1

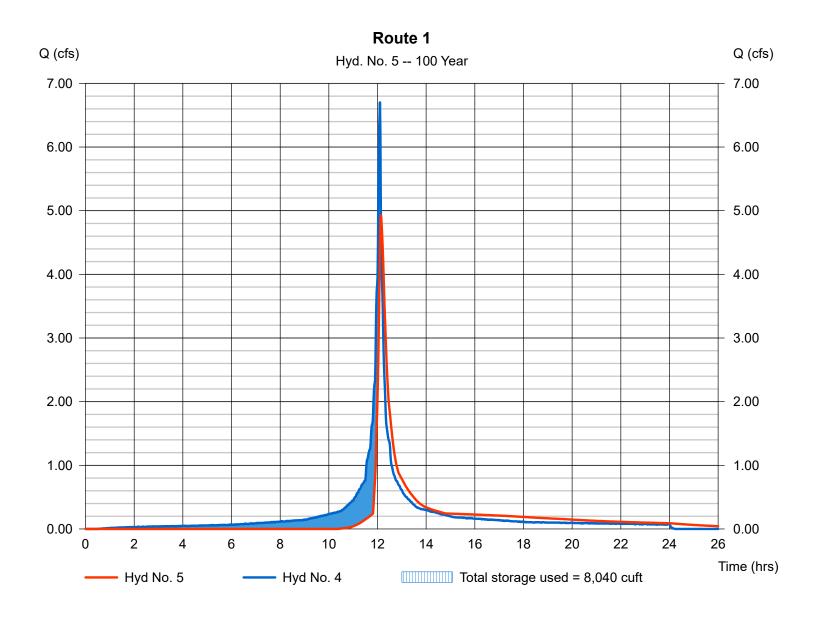
Hydrograph type = Combine Storm frequency = 100 yrs Time interval = 1 min Inflow hyds. = 2, 3 Peak discharge = 6.701 cfs
Time to peak = 12.10 hrs
Hyd. volume = 21,391 cuft
Contrib. drain. area = 0.809 ac

Hydraflow Hydrographs by Intelisolve v9.25

Wednesday, Apr 16, 2025

Hyd. No. 5

Route 1


Hydrograph type = Reservoir Storm frequency = 100 yrs Time interval = 1 min

Inflow hyd. No. = 4 - Prop - Basin 1

Reservoir name = Basin 1

Peak discharge = 4.928 cfs
Time to peak = 12.13 hrs
Hyd. volume = 18,485 cuft
Max. Elevation = 76.88 ft
Max. Storage = 8,040 cuft

Storage Indication method used.

Hydraflow Hydrographs by Intelisolve v9.25

Wednesday, Apr 16, 2025

= 3.205 cfs

= 12.20 hrs

= 79

= 0 ft

= 11,895 cuft

= 14.10 min

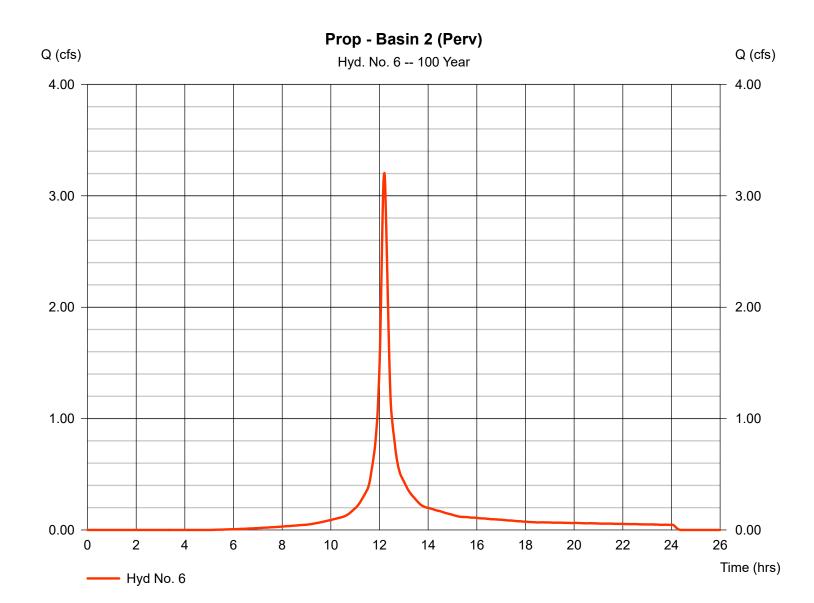
Hyd. No. 6

Prop - Basin 2 (Perv)

Hydrograph type = SCS Runoff
Storm frequency = 100 yrs
Time interval = 1 min
Drainage area = 0.535 ac
Basin Slope = 0.0 %
Tc method = TR55
Total precip. = 8.66 in
Storm duration = NOAA C.cds

= 8.66 in Distribution = Custom = NOAA C.cds Shape factor = 484

Peak discharge


Time to peak

Hyd. volume

Curve number

Hydraulic length

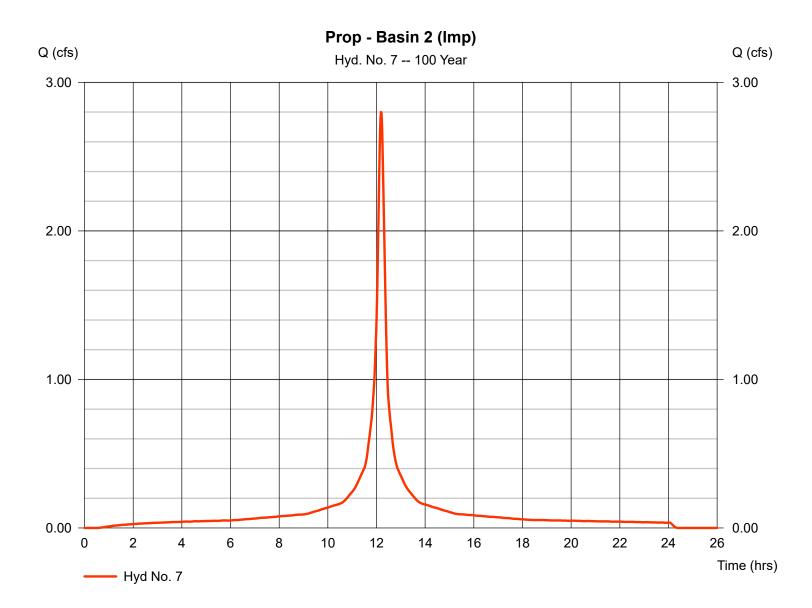
Time of conc. (Tc)

Hydraflow Hydrographs by Intelisolve v9.25

Wednesday, Apr 16, 2025

Hyd. No. 7

Prop - Basin 2 (Imp)

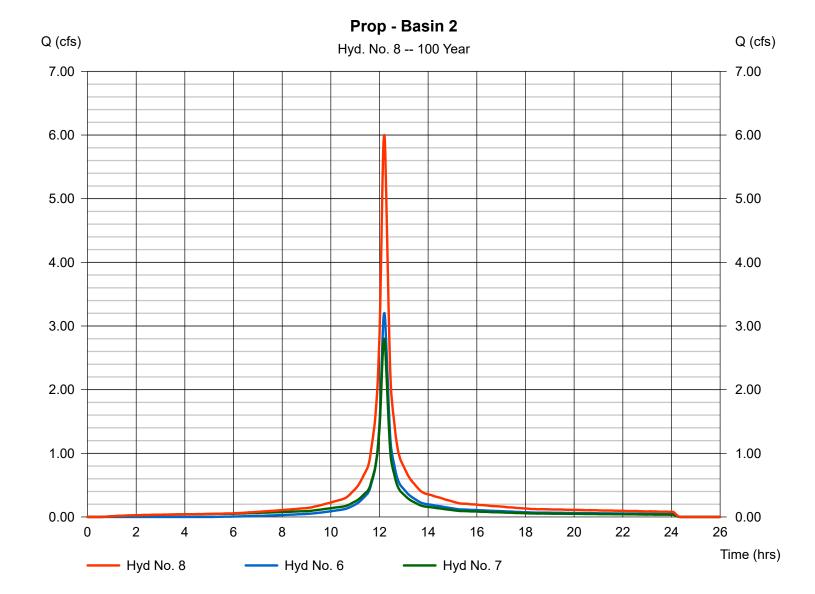

Hydrograph type = SCS Runoff
Storm frequency = 100 yrs
Time interval = 1 min
Drainage area = 0.390 ac
Basin Slope = 0.0 %
Tc method = TR55
Total precip. = 8.66 in

Storm duration = NOAA C.cds

Peak discharge = 2.801 cfs
Time to peak = 12.18 hrs
Hyd. volume = 11,920 cuft

Curve number = 98 Hydraulic length = 0 ft

Time of conc. (Tc) = 13.70 min
Distribution = Custom
Shape factor = 484


Hydraflow Hydrographs by Intelisolve v9.25

Wednesday, Apr 16, 2025

Hyd. No. 8

Prop - Basin 2

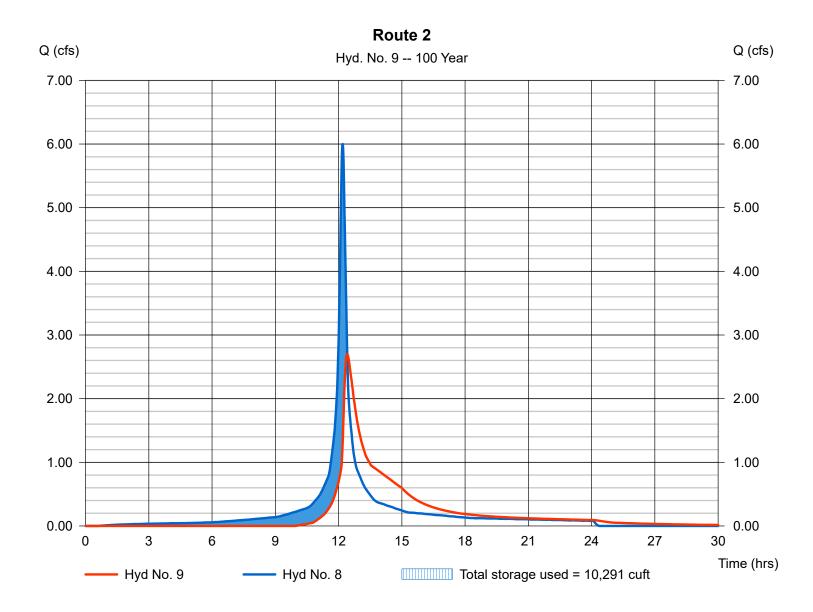
Hydrograph type = Combine Storm frequency = 100 yrs Time interval = 1 min Inflow hyds. = 6, 7 Peak discharge = 6.001 cfs Time to peak = 12.20 hrs Hyd. volume = 23,815 cuft Contrib. drain. area = 0.925 ac

Hydraflow Hydrographs by Intelisolve v9.25

Wednesday, Apr 16, 2025

Hyd. No. 9

Route 2


Hydrograph type = Reservoir Storm frequency = 100 yrs Time interval = 1 min

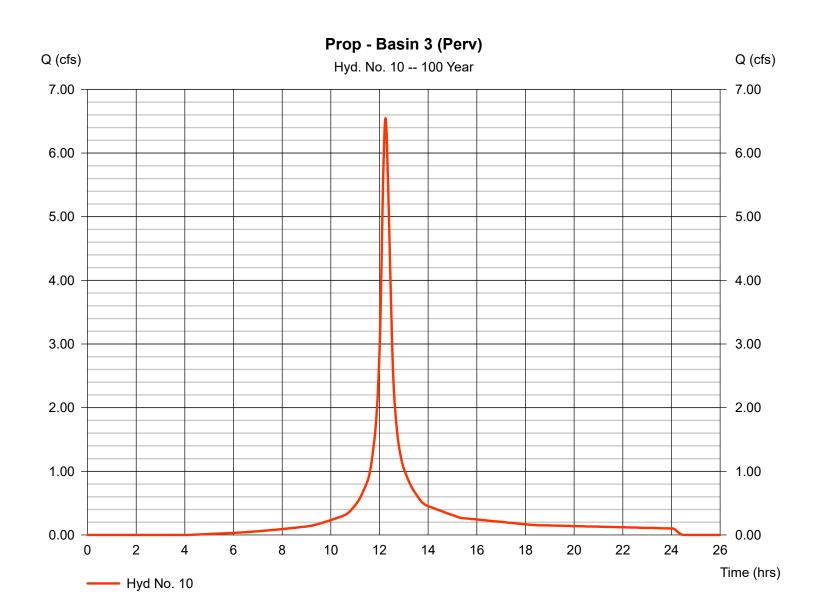
Inflow hyd. No. = 8 - Prop - Basin 2

Reservoir name = Basin 2

Peak discharge = 2.699 cfs
Time to peak = 12.42 hrs
Hyd. volume = 21,506 cuft
Max. Elevation = 74.29 ft
Max. Storage = 10,291 cuft

Storage Indication method used.

Hydraflow Hydrographs by Intelisolve v9.25


Wednesday, Apr 16, 2025

Hyd. No. 10

Prop - Basin 3 (Perv)

Hydrograph type = SCS Runoff Peak discharge = 6.548 cfsTime to peak Storm frequency = 100 yrs $= 12.25 \, hrs$ Time interval = 1 min Hyd. volume = 27,879 cuftDrainage area = 1.162 acCurve number = 83* Basin Slope = 0.0 % Hydraulic length = 0 ftTc method = TR55 Time of conc. (Tc) $= 19.00 \, \text{min}$ Total precip. = 8.66 inDistribution = Custom Storm duration = NOAA C.cds Shape factor = 484

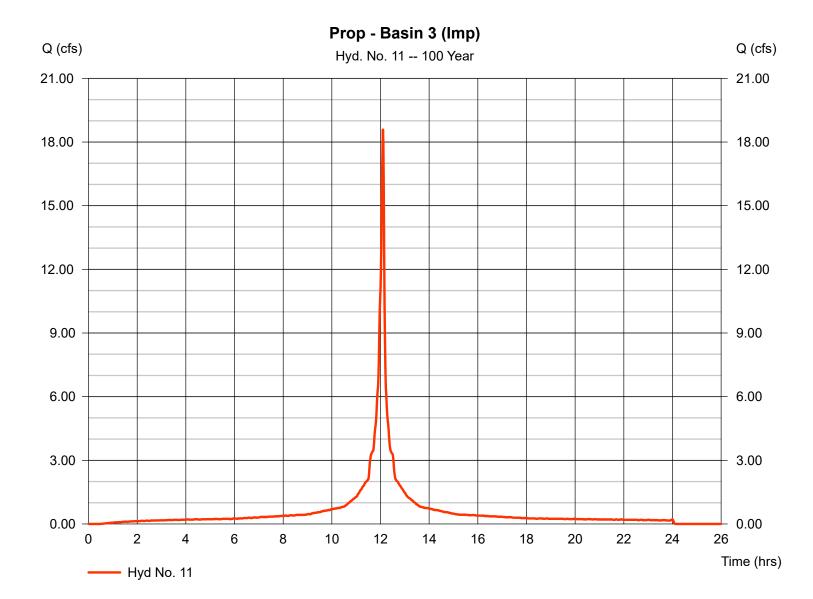
^{*} Composite (Area/CN) = [(0.456 x 79) + (0.706 x 86)] / 1.162

= NOAA C.cds

Hydraflow Hydrographs by Intelisolve v9.25

Wednesday, Apr 16, 2025

= 484

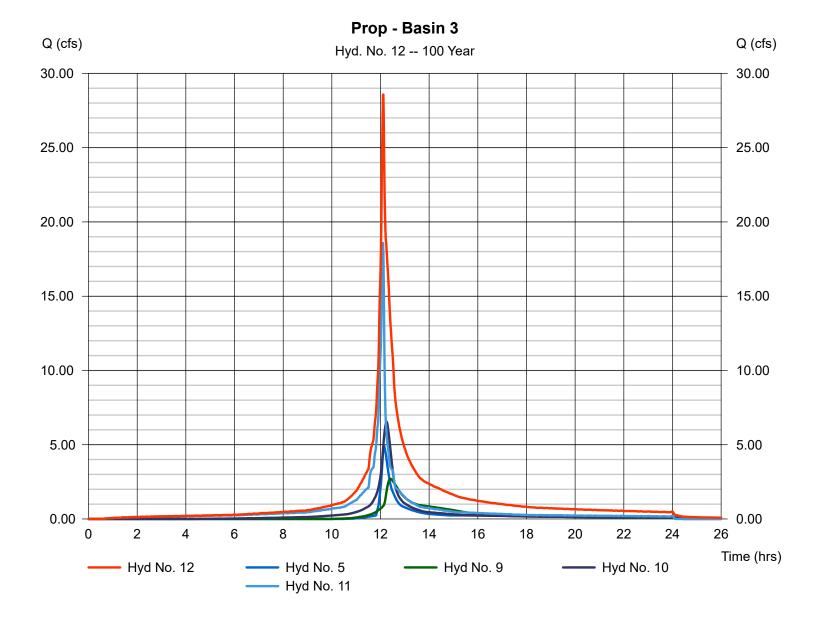

Shape factor

Hyd. No. 11

Storm duration

Prop - Basin 3 (Imp)

Hydrograph type = SCS Runoff Peak discharge = 18.59 cfsStorm frequency Time to peak = 100 yrs= 12.10 hrsTime interval = 1 min Hyd. volume = 57,002 cuftDrainage area = 1.865 acCurve number = 98 Basin Slope = 0.0 % Hydraulic length = 0 ftTc method = TR55 Time of conc. (Tc) $= 3.90 \, \text{min}$ Distribution Total precip. = 8.66 in= Custom


Hydraflow Hydrographs by Intelisolve v9.25

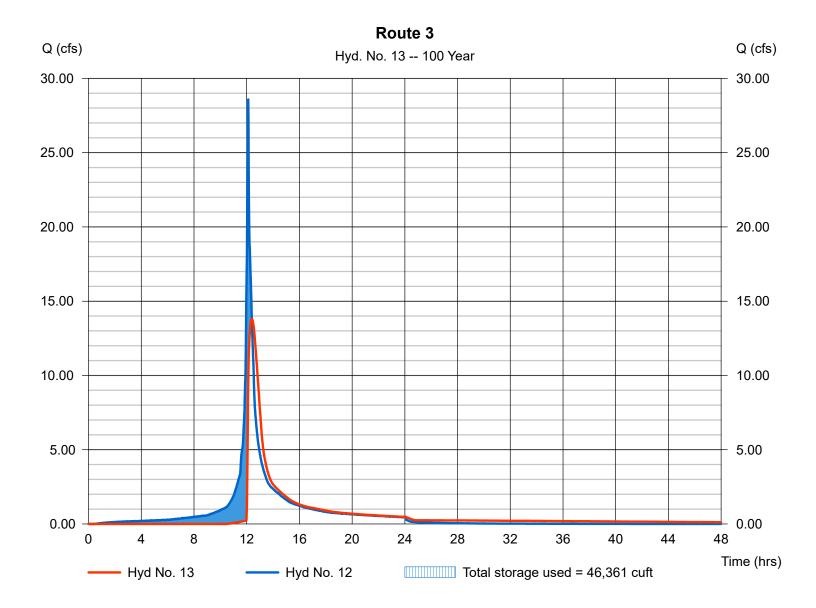
Wednesday, Apr 16, 2025

Hyd. No. 12

Prop - Basin 3

Hydrograph type = Combine Storm frequency = 100 yrs Time interval = 1 min Inflow hyds. = 5, 9, 10, 11 Peak discharge = 28.58 cfs
Time to peak = 12.12 hrs
Hyd. volume = 124,873 cuft
Contrib. drain. area = 3.027 ac

Hydraflow Hydrographs by Intelisolve v9.25


Wednesday, Apr 16, 2025

Hyd. No. 13

Route 3

Hydrograph type = Reservoir Peak discharge = 13.80 cfsStorm frequency Time to peak = 100 yrs $= 12.38 \, hrs$ Time interval = 1 min Hyd. volume = 107,168 cuft Inflow hyd. No. = 12 - Prop - Basin 3 Max. Elevation = 69.91 ftReservoir name = Basin 3 Max. Storage = 46,361 cuft

Storage Indication method used.

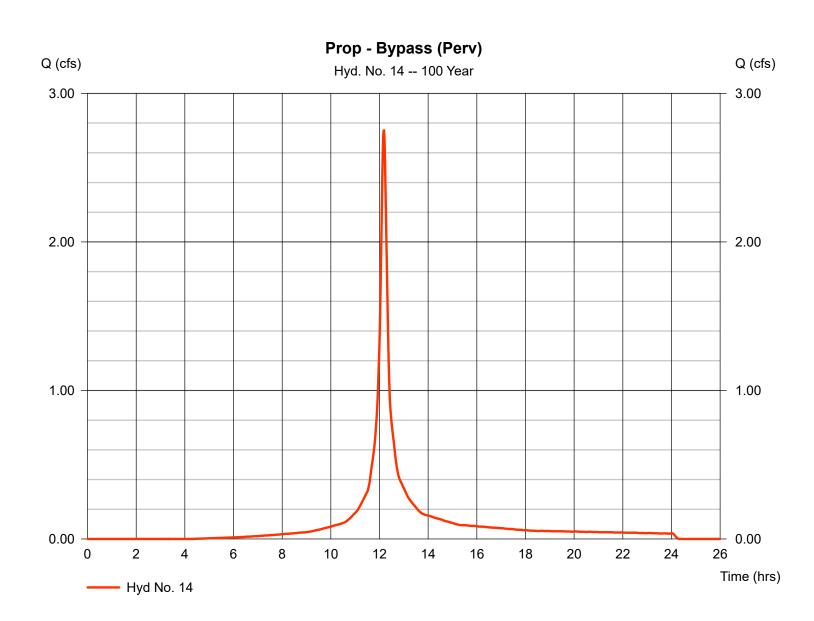
Hydraflow Hydrographs by Intelisolve v9.25

Wednesday, Apr 16, 2025

Hyd. No. 14

Prop - Bypass (Perv)

Hydrograph type = SCS Runoff
Storm frequency = 100 yrs
Time interval = 1 min
Drainage area = 0.424 ac
Basin Slope = 0.0 %
Tc method = TR55
Total precip. = 8.66 in


Storm duration = NOAA C.cds

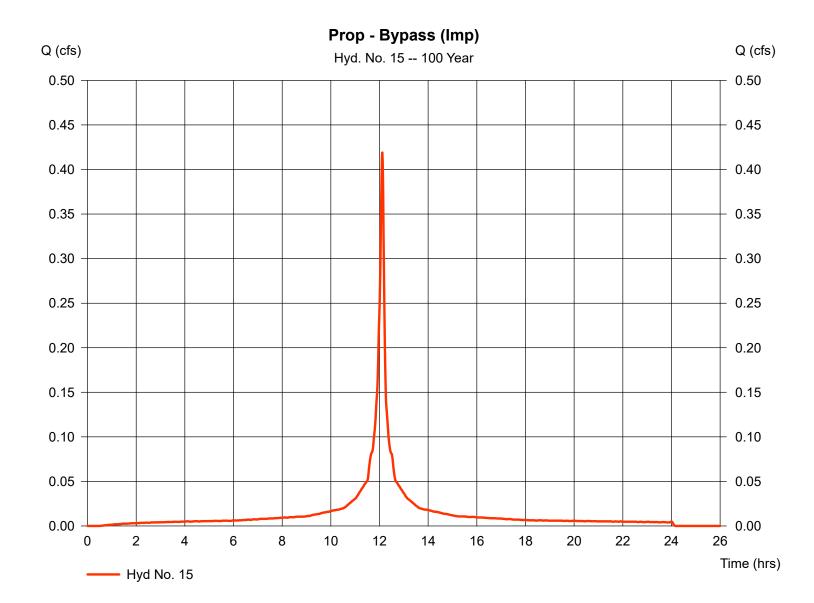
Peak discharge = 2.751 cfs
Time to peak = 12.18 hrs
Hyd. volume = 9,830 cuft

Curve number = 82^* Hydraulic length = 0 ft

Time of conc. (Tc) = 11.80 min
Distribution = Custom
Shape factor = 484

^{*} Composite (Area/CN) = [(0.214 x 79) + (0.210 x 86)] / 0.424

Hydraflow Hydrographs by Intelisolve v9.25

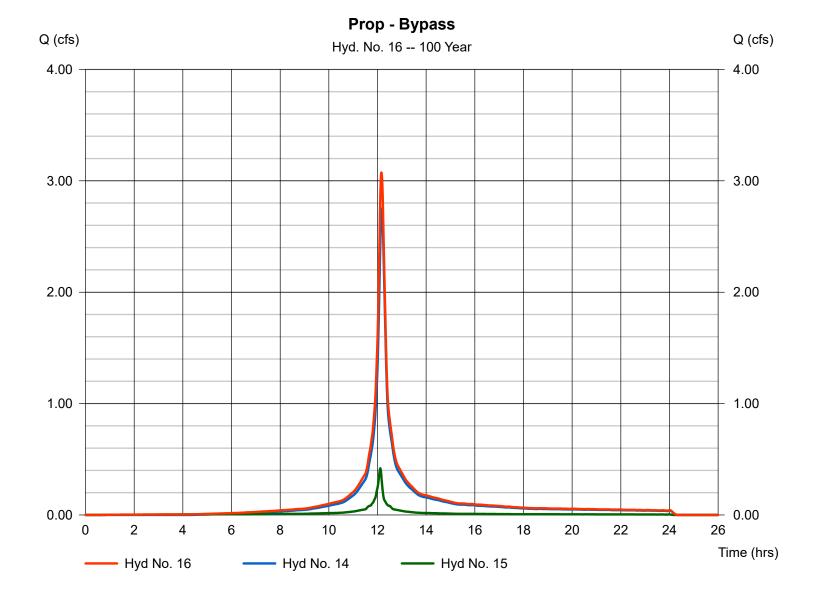

Wednesday, Apr 16, 2025

Hyd. No. 15

Prop - Bypass (Imp)

Hydrograph type = SCS Runoff Storm frequency = 100 yrsTime interval = 1 min Drainage area = 0.044 acBasin Slope = 0.0 % Tc method = TR55 Total precip. = 8.66 inStorm duration = NOAA C.cds

Peak discharge = 0.419 cfsTime to peak $= 12.12 \, hrs$ Hyd. volume = 1,387 cuft Curve number = 98 Hydraulic length = 0 ftTime of conc. (Tc) $= 6.50 \, \text{min}$ Distribution = Custom = 484 Shape factor

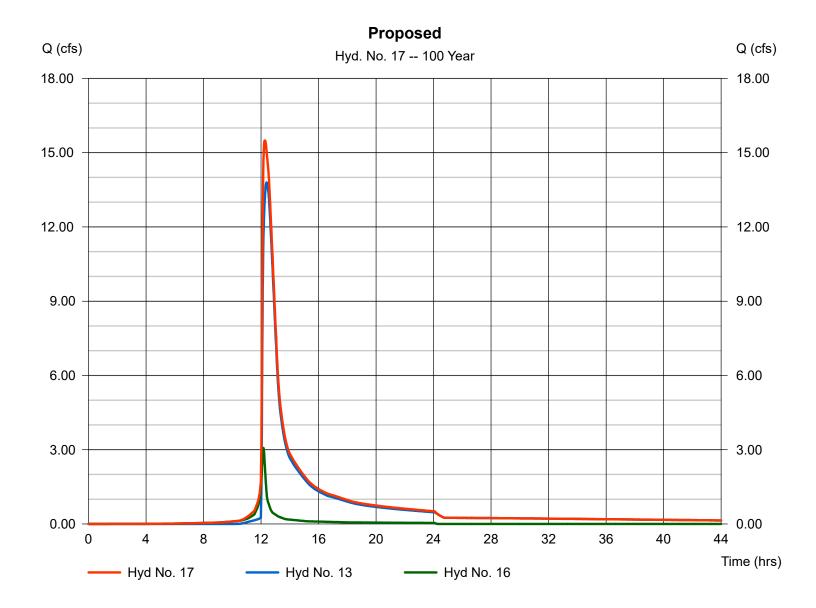

Hydraflow Hydrographs by Intelisolve v9.25

Wednesday, Apr 16, 2025

Hyd. No. 16

Prop - Bypass

Hydrograph type = Combine Storm frequency = 100 yrs Time interval = 1 min Inflow hyds. = 14, 15 Peak discharge = 3.073 cfs Time to peak = 12.17 hrs Hyd. volume = 11,217 cuft Contrib. drain. area = 0.468 ac


Hydraflow Hydrographs by Intelisolve v9.25

Wednesday, Apr 16, 2025

Hyd. No. 17

Proposed

Hydrograph type = Combine Storm frequency = 100 yrs Time interval = 1 min Inflow hyds. = 13, 16 Peak discharge = 15.49 cfs
Time to peak = 12.27 hrs
Hyd. volume = 118,385 cuft
Contrib. drain. area = 0.000 ac

Hydraflow Hydrographs by Intelisolve v9.25

Wednesday, Apr 16, 2025

2 - Year	
Summary Report	68
Hydrograph Reports	69
Hydrograph No. 1, SCS Runoff, Existing	69
Hydrograph No. 2, SCS Runoff, Prop - Basin 1 (Perv)	70
Hydrograph No. 3, SCS Runoff, Prop - Basin 1 (Imp)	71
Hydrograph No. 4, Combine, Prop - Basin 1	
Hydrograph No. 5, Reservoir, Route 1	73
Hydrograph No. 6, SCS Runoff, Prop - Basin 2 (Perv)	
Hydrograph No. 7, SCS Runoff, Prop - Basin 2 (Imp)	
Hydrograph No. 8, Combine, Prop - Basin 2	
Hydrograph No. 9, Reservoir, Route 2	
Hydrograph No. 10, SCS Runoff, Prop - Basin 3 (Perv)	
Hydrograph No. 11, SCS Runoff, Prop - Basin 3 (Imp)	
Hydrograph No. 12, Combine, Prop - Basin 3	
Hydrograph No. 13, Reservoir, Route 3	
Hydrograph No. 14, SCS Runoff, Prop - Bypass (Perv)	
Hydrograph No. 15, SCS Runoff, Prop - Bypass (Imp)	
Hydrograph No. 16, Combine, Prop - Bypass	
Hydrograph No. 17, Combine, Proposed	85
40 W	
10 - Year	
Summary Report	
Hydrograph Reports	
Hydrograph No. 1, SCS Runoff, Existing	
Hydrograph No. 2, SCS Runoff, Prop - Basin 1 (Perv)	
Hydrograph No. 3, SCS Runoff, Prop - Basin 1 (Imp)	
Hydrograph No. 4, Combine, Prop - Basin 1	
Hydrograph No. 5, Reservoir, Route 1	
Hydrograph No. 6, SCS Runoff, Prop - Basin 2 (Perv)	
Hydrograph No. 7, SCS Runoff, Prop - Basin 2 (Imp)	
Hydrograph No. 8, Combine, Prop - Basin 2	
Hydrograph No. 9, Reservoir, Route 2	
Hydrograph No. 10, SCS Runoff, Prop - Basin 3 (Perv)	
Hydrograph No. 11, SCS Runoff, Prop - Basin 3 (Imp)	
Hydrograph No. 12, Combine, Prop - Basin 3	
Hydrograph No. 13, Reservoir, Route 3	
Hydrograph No. 14, SCS Runoff, Prop. Bypass (Perv)	
Hydrograph No. 15, SCS Runoff, Prop - Bypass (Imp)	
Hydrograph No. 16, Combine, Prop - BypassHydrograph No. 17, Combine, Proposed	
Hydrograph No. 17, Combine, Proposed	103
100 - Year	
Summary Report	104
Hydrograph Reports	
Hydrograph No. 1, SCS Runoff, Existing	105
Hydrograph No. 2, SCS Runoff, Prop - Basin 1 (Perv)	
Hydrograph No. 3, SCS Runoff, Prop - Basin 1 (Imp)	
Hydrograph No. 4, Combine, Prop - Basin 1	
Hydrograph No. 5, Reservoir, Route 1	

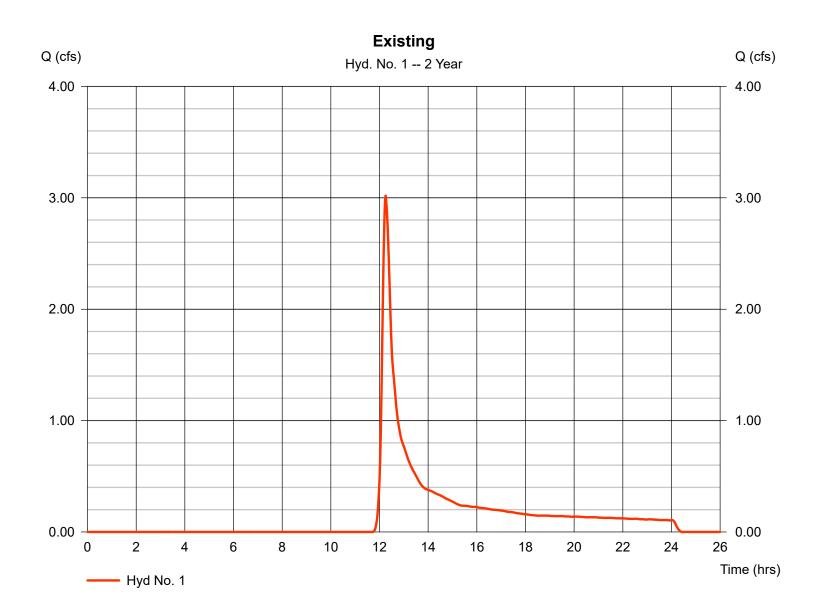
Hydrograph No. 6, SCS Runoff, Prop - Basin 2 (Perv)	110
Hydrograph No. 7, SCS Runoff, Prop - Basin 2 (Imp)	
Hydrograph No. 8, Combine, Prop - Basin 2	112
Hydrograph No. 9, Reservoir, Route 2	113
Hydrograph No. 10, SCS Runoff, Prop - Basin 3 (Perv)	114
Hydrograph No. 11, SCS Runoff, Prop - Basin 3 (Imp)	115
Hydrograph No. 12, Combine, Prop - Basin 3	116
Hydrograph No. 13, Reservoir, Route 3	117
Hydrograph No. 14, SCS Runoff, Prop - Bypass (Perv)	118
Hydrograph No. 15, SCS Runoff, Prop - Bypass (Imp)	119
Hydrograph No. 16, Combine, Prop - Bypass	120
Hydrograph No. 17, Combine, Proposed	121

Hydrograph Summary Report

Hydraflow Hydrographs by Intelisolve v9.25

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph description
1	SCS Runoff	3.019	1	735	14,080				Existing
2	SCS Runoff	0.847	1	729	2,634				Prop - Basin 1 (Perv)
3	SCS Runoff	1.925	1	726	5,620				Prop - Basin 1 (Imp)
4	Combine	2.681	1	726	8,253	2, 3			Prop - Basin 1
5	Reservoir	0.206	1	792	5,353	4	76.41	5,253	Route 1
6	SCS Runoff	0.982	1	732	3,563				Prop - Basin 2 (Perv)
7	SCS Runoff	1.232	1	731	5,104				Prop - Basin 2 (Imp)
8	Combine	2.213	1	732	8,667	6, 7			Prop - Basin 2
9	Reservoir	0.442	1	763	6,357	8	73.62	4,754	Route 2
10	SCS Runoff	2.205	1	735	9,060				Prop - Basin 3 (Perv)
11	SCS Runoff	8.186	1	726	24,409				Prop - Basin 3 (Imp)
12	Combine	9.730	1	726	45,179	5, 9, 10,			Prop - Basin 3
13	Reservoir	0.463	1	1007	28,069	11 12	69.02	32,042	Route 3
14	SCS Runoff	0.911	1	731	3,132				Prop - Bypass (Perv)
15	SCS Runoff	0.184	1	727	594				Prop - Bypass (Imp)
16	Combine	1.047	1	730	3,725	14, 15			Prop - Bypass
17	Combine	1.138	1	730	31,794	13, 16			Proposed
21-210 (F).gpw					Return F	Period: 2 Ye	ar	Wednesda	y, Apr 16, 2025

Hydraflow Hydrographs by Intelisolve v9.25


Wednesday, Apr 16, 2025

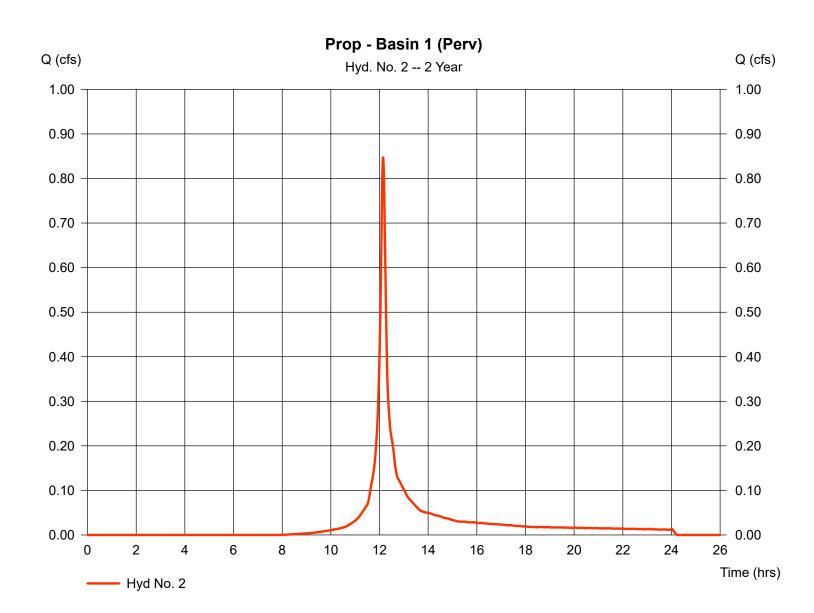
Hyd. No. 1

Existing

Hydrograph type = SCS Runoff Peak discharge = 3.019 cfsStorm frequency Time to peak = 2 yrs $= 12.25 \, hrs$ Time interval = 1 min Hyd. volume = 14,080 cuftDrainage area = 5.229 acCurve number = 61* Basin Slope = 0.0 % Hydraulic length = 0 ftTc method = TR55 Time of conc. (Tc) $= 16.40 \, \text{min}$ Total precip. = 3.84 inDistribution = Custom = 484 Storm duration = NOAA C.cds Shape factor

^{*} Composite (Area/CN) = [(2.998 x 55) + (2.231 x 70)] / 5.229

Hydraflow Hydrographs by Intelisolve v9.25


Wednesday, Apr 16, 2025

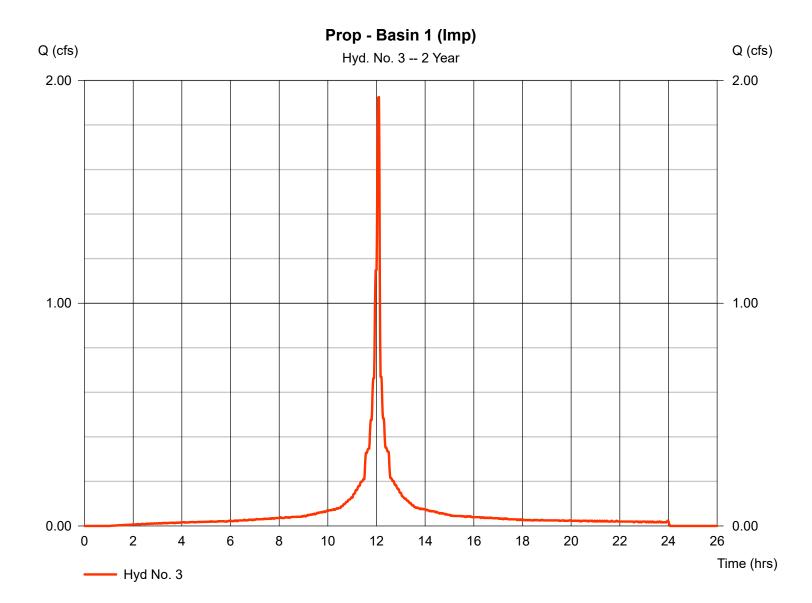
Hyd. No. 2

Prop - Basin 1 (Perv)

Hydrograph type = SCS Runoff Peak discharge = 0.847 cfsTime to peak Storm frequency = 2 yrs $= 12.15 \, hrs$ Time interval = 1 min Hyd. volume = 2,634 cuft Drainage area = 0.351 acCurve number = 82* Basin Slope = 0.0 % Hydraulic length = 0 ftTc method = TR55 Time of conc. (Tc) = 9.20 min Total precip. = 3.84 inDistribution = Custom Storm duration = NOAA C.cds Shape factor = 484

^{*} Composite (Area/CN) = [(0.196 x 79) + (0.155 x 86)] / 0.351

Hydraflow Hydrographs by Intelisolve v9.25

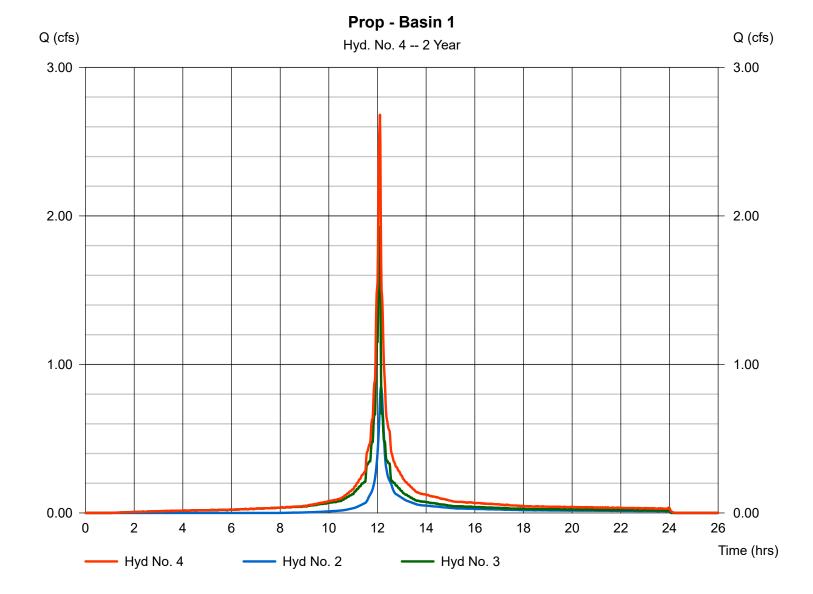

Wednesday, Apr 16, 2025

Hyd. No. 3

Prop - Basin 1 (Imp)

Hydrograph type = SCS Runoff Storm frequency = 2 yrs Time interval = 1 min Drainage area = 0.458 acBasin Slope = 0.0 % Tc method = TR55 Total precip. = 3.84 inStorm duration = NOAA C.cds

Peak discharge = 1.925 cfsTime to peak = 12.10 hrsHyd. volume = 5,620 cuftCurve number = 98 Hydraulic length = 0 ftTime of conc. (Tc) $= 1.60 \, \text{min}$ Distribution = Custom = 484 Shape factor


Hydraflow Hydrographs by Intelisolve v9.25

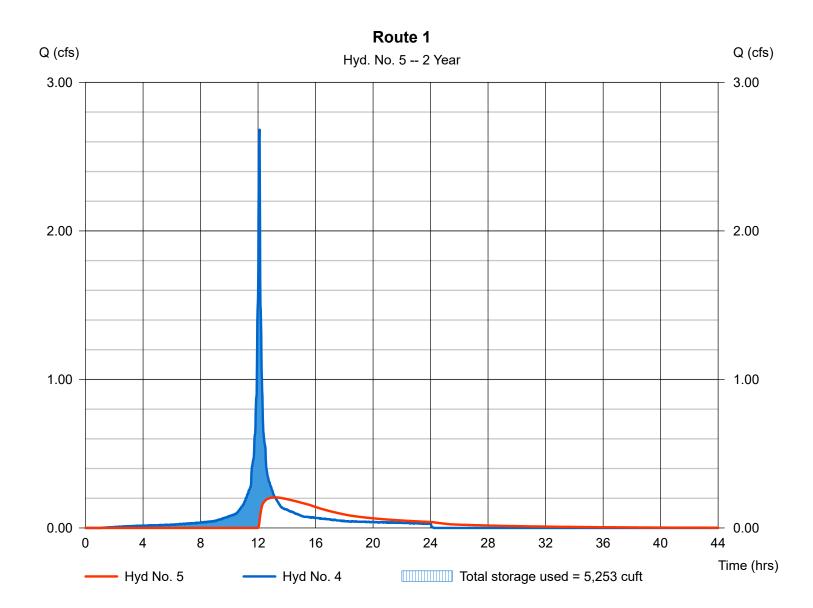
Wednesday, Apr 16, 2025

Hyd. No. 4

Prop - Basin 1

Hydrograph type = Combine Storm frequency = 2 yrs Time interval = 1 min Inflow hyds. = 2, 3 Peak discharge = 2.681 cfs
Time to peak = 12.10 hrs
Hyd. volume = 8,253 cuft
Contrib. drain. area = 0.809 ac

Hydraflow Hydrographs by Intelisolve v9.25


Wednesday, Apr 16, 2025

Hyd. No. 5

Route 1

Hydrograph type = Reservoir Peak discharge = 0.206 cfsStorm frequency Time to peak = 2 yrs = 13.20 hrsTime interval = 1 min Hyd. volume = 5,353 cuftInflow hyd. No. = 4 - Prop - Basin 1 Max. Elevation $= 76.41 \, \text{ft}$ Reservoir name = Basin 1 Max. Storage = 5,253 cuft

Storage Indication method used.

Hydraflow Hydrographs by Intelisolve v9.25

Wednesday, Apr 16, 2025

= 0.982 cfs

= 12.20 hrs

= 3,563 cuft

= 79

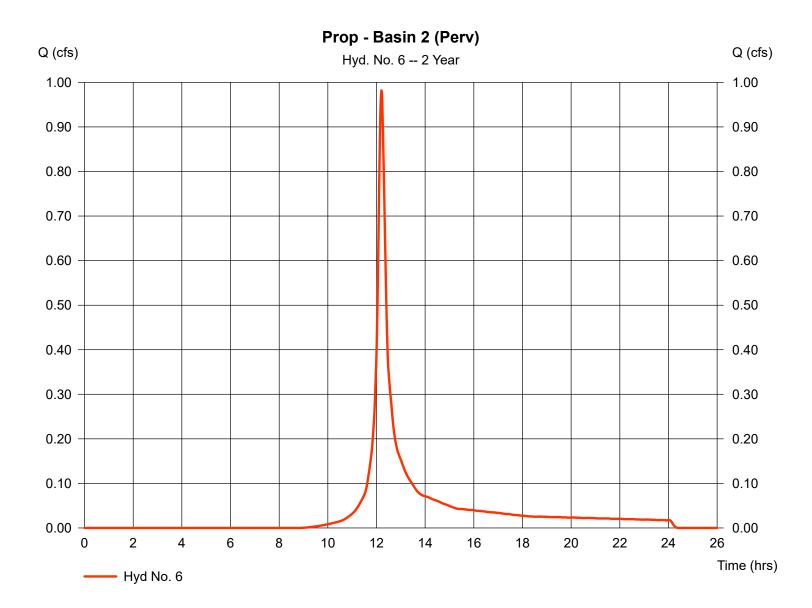
= 0 ft

Hyd. No. 6

Prop - Basin 2 (Perv)

Hydrograph type = SCS Runoff
Storm frequency = 2 yrs
Time interval = 1 min
Drainage area = 0.535 ac
Basin Slope = 0.0 %
Tc method = TR55
Total precip. = 3.84 in
Storm duration = NOAA C.cds

= TR55 Time of conc. (Tc) = 14.10 min = 3.84 in Distribution = Custom = NOAA C.cds Shape factor = 484


Peak discharge

Time to peak

Hyd. volume

Curve number

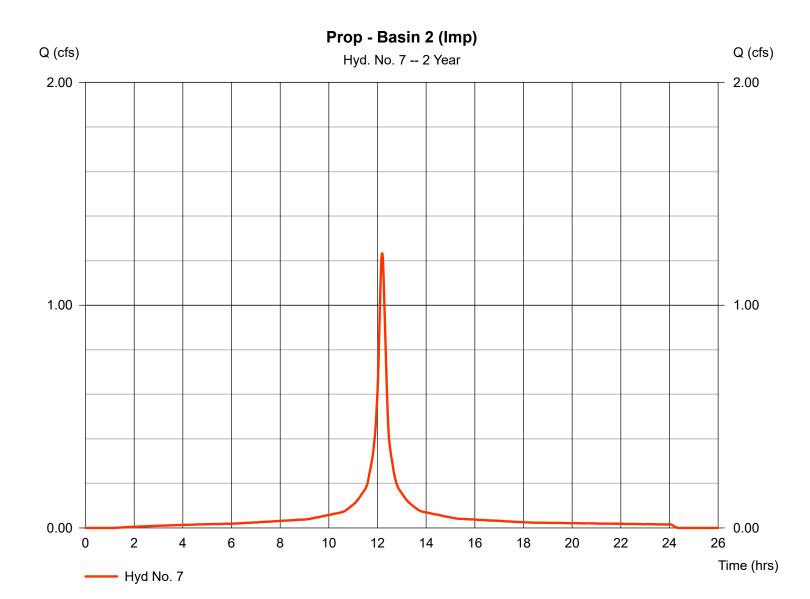
Hydraulic length

Hydraflow Hydrographs by Intelisolve v9.25

Wednesday, Apr 16, 2025

Hyd. No. 7

Prop - Basin 2 (Imp)

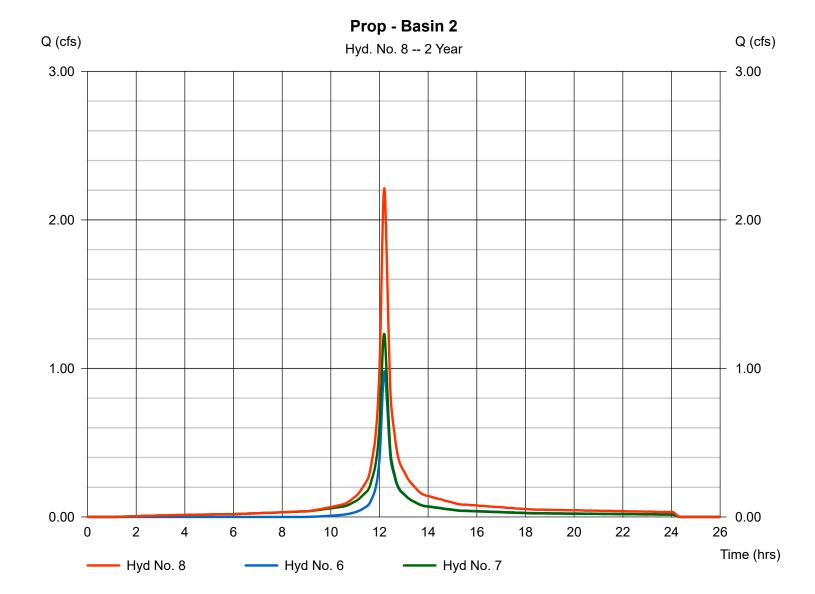

Hydrograph type = SCS Runoff Storm frequency = 2 yrs Time interval = 1 min Drainage area = 0.390 acBasin Slope = 0.0 % Tc method = TR55

Total precip. = 3.84 in

Storm duration = NOAA C.cds

Peak discharge = 1.232 cfsTime to peak = 12.18 hrsHyd. volume = 5,104 cuftCurve number = 98 Hydraulic length = 0 ftTime of conc. (Tc) $= 13.70 \, \text{min}$

Distribution = Custom = 484 Shape factor


Hydraflow Hydrographs by Intelisolve v9.25

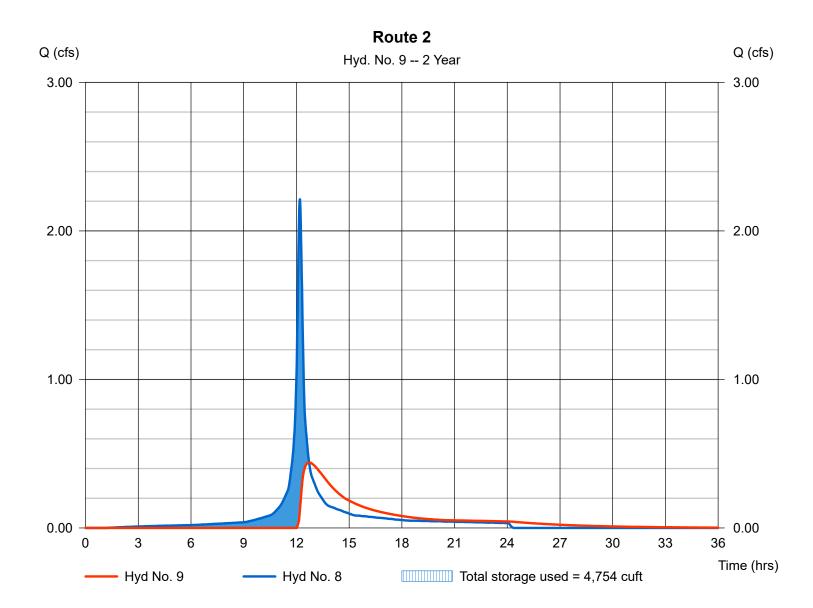
Wednesday, Apr 16, 2025

Hyd. No. 8

Prop - Basin 2

Hydrograph type = Combine Storm frequency = 2 yrs Time interval = 1 min Inflow hyds. = 6, 7 Peak discharge = 2.213 cfs
Time to peak = 12.20 hrs
Hyd. volume = 8,667 cuft
Contrib. drain. area = 0.925 ac

Hydraflow Hydrographs by Intelisolve v9.25


Wednesday, Apr 16, 2025

Hyd. No. 9

Route 2

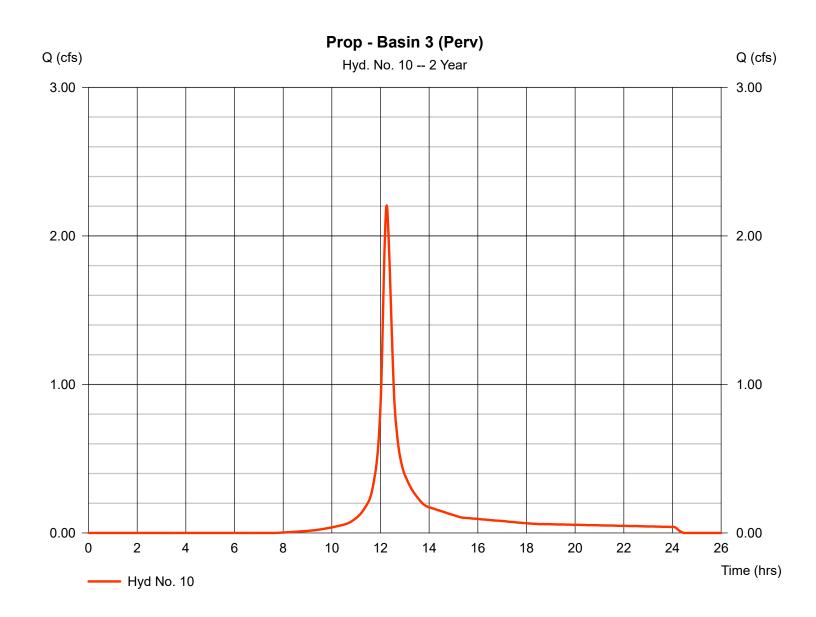
Hydrograph type = Reservoir Peak discharge = 0.442 cfsStorm frequency Time to peak $= 12.72 \, hrs$ = 2 yrs Time interval = 1 min Hyd. volume = 6,357 cuftInflow hyd. No. = 8 - Prop - Basin 2 Max. Elevation = 73.62 ftReservoir name = Basin 2 Max. Storage = 4,754 cuft

Storage Indication method used.

Hydraflow Hydrographs by Intelisolve v9.25

Wednesday, Apr 16, 2025

Hyd. No. 10


Prop - Basin 3 (Perv)

Hydrograph type = SCS Runoff Peak discharge = 2.205 cfsStorm frequency = 2 yrsTime to peak $= 12.25 \, hrs$ Time interval = 1 min Hyd. volume = 9,060 cuftDrainage area = 1.162 acCurve number = 83* Basin Slope = 0.0 % Hydraulic length = 0 ftTc method = TR55 Time of conc. (Tc) $= 19.00 \, \text{min}$ Total precip. = 3.84 inDistribution

Storm duration = NOAA C.cds

Distribution = Custom Shape factor = 484

^{*} Composite (Area/CN) = [(0.456 x 79) + (0.706 x 86)] / 1.162

Hydraflow Hydrographs by Intelisolve v9.25

Wednesday, Apr 16, 2025

= 8.186 cfs

= 12.10 hrs

= 98

= 24,409 cuft

Hyd. No. 11

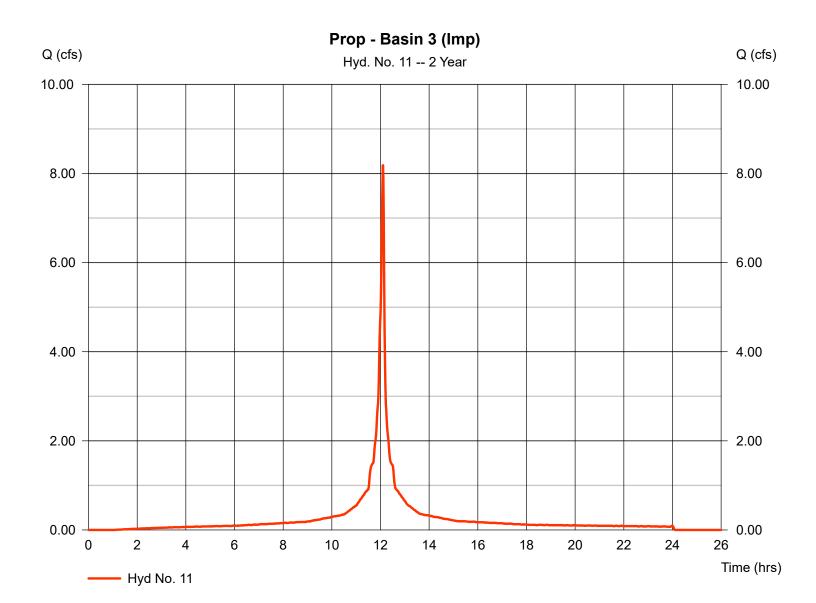
Prop - Basin 3 (Imp)

Hydrograph type = SCS Runoff
Storm frequency = 2 yrs
Time interval = 1 min
Drainage area = 1.865 ac
Basin Slope = 0.0 %
Tc method = TR55
Total precip. = 3.84 in
Storm duration = NOAA C.cds

= 0.0 % Hydraulic length = 0 ft

= TR55 Time of conc. (Tc) = 3.90 min

= 3.84 in Distribution = Custom

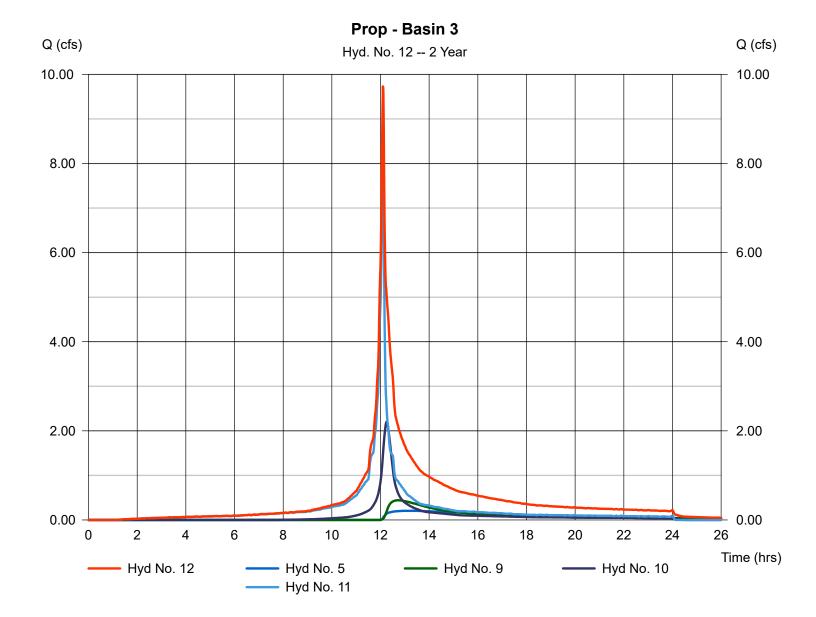

= NOAA C.cds Shape factor = 484

Peak discharge

Time to peak

Hyd. volume

Curve number


Hydraflow Hydrographs by Intelisolve v9.25

Wednesday, Apr 16, 2025

Hyd. No. 12

Prop - Basin 3

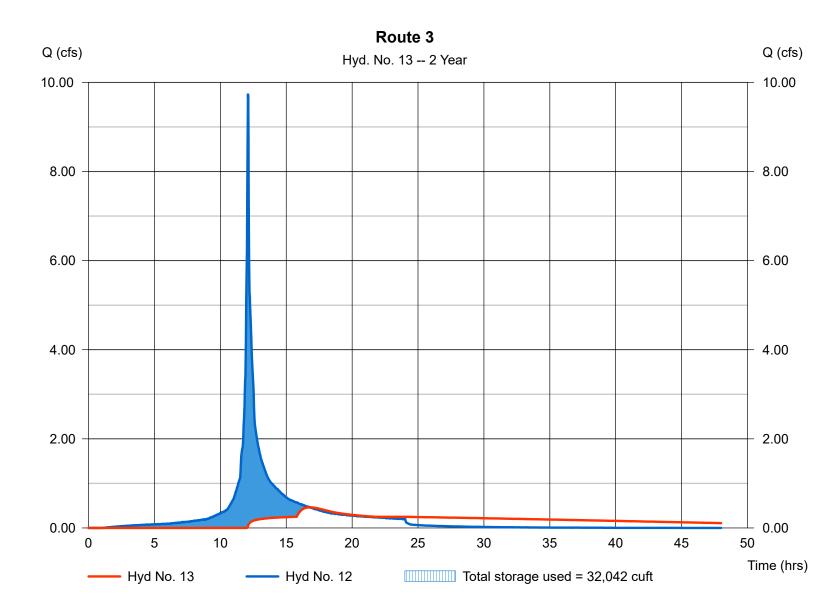
Hydrograph type = Combine Storm frequency = 2 yrs Time interval = 1 min Inflow hyds. = 5, 9, 10, 11 Peak discharge = 9.730 cfs Time to peak = 12.10 hrs Hyd. volume = 45,179 cuft Contrib. drain. area = 3.027 ac

Hydraflow Hydrographs by Intelisolve v9.25

Wednesday, Apr 16, 2025

Hyd. No. 13

Route 3


Hydrograph type = Reservoir Storm frequency = 2 yrs Time interval = 1 min

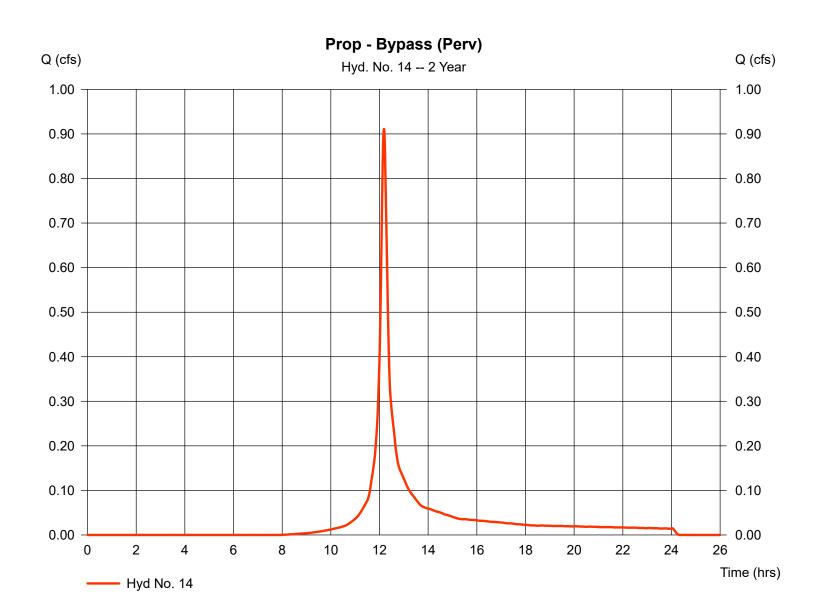
Inflow hyd. No. = 12 - Prop - Basin 3

Reservoir name = Basin 3

Peak discharge = 0.463 cfs
Time to peak = 16.78 hrs
Hyd. volume = 28,069 cuft
Max. Elevation = 69.02 ft
Max. Storage = 32,042 cuft

Storage Indication method used.

Hydraflow Hydrographs by Intelisolve v9.25


Wednesday, Apr 16, 2025

Hyd. No. 14

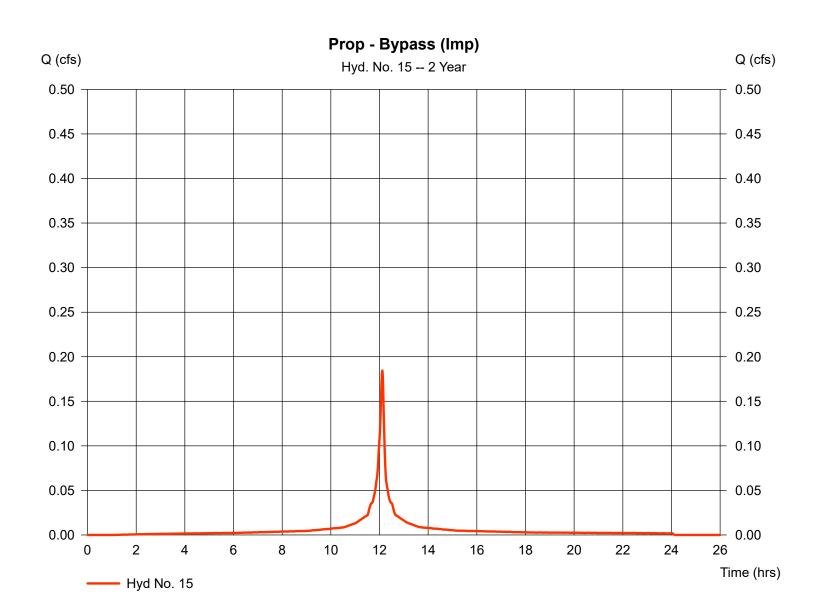
Prop - Bypass (Perv)

Hydrograph type = SCS Runoff Peak discharge = 0.911 cfsTime to peak Storm frequency = 2 yrs $= 12.18 \, hrs$ Time interval = 1 min Hyd. volume = 3,132 cuft Drainage area = 0.424 acCurve number = 82* Basin Slope = 0.0 % Hydraulic length = 0 ftTc method = TR55 Time of conc. (Tc) = 11.80 min Total precip. = 3.84 inDistribution = Custom Storm duration = NOAA C.cds Shape factor = 484

^{*} Composite (Area/CN) = [(0.214 x 79) + (0.210 x 86)] / 0.424

Hydraflow Hydrographs by Intelisolve v9.25

Wednesday, Apr 16, 2025


Hyd. No. 15

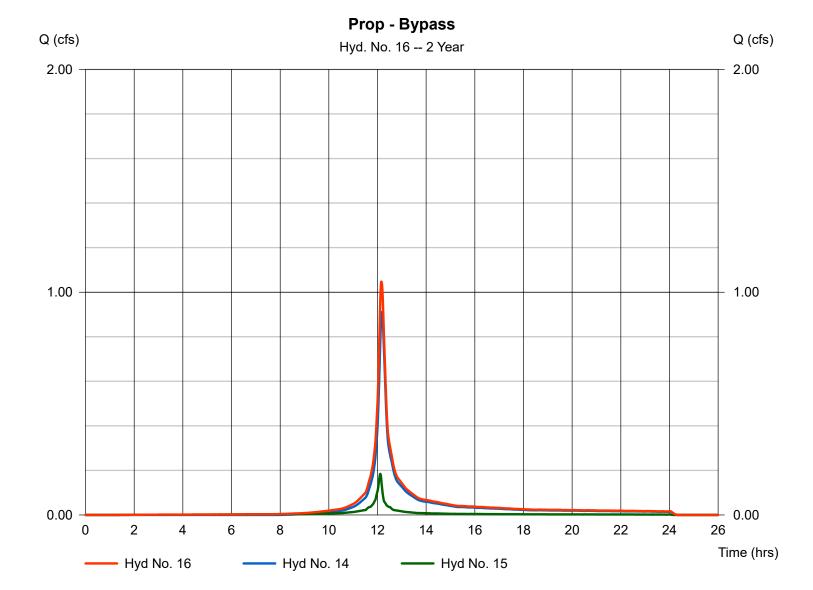
Prop - Bypass (Imp)

Hydrograph type = SCS Runoff Storm frequency = 2 yrsTime interval = 1 min Drainage area = 0.044 acBasin Slope = 0.0 % Tc method = TR55 Total precip. = 3.84 in

Storm duration = NOAA C.cds

Peak discharge = 0.184 cfsTime to peak $= 12.12 \, hrs$ Hyd. volume = 594 cuft Curve number = 98 Hydraulic length = 0 ftTime of conc. (Tc) $= 6.50 \, \text{min}$ Distribution = Custom = 484 Shape factor

Hydraflow Hydrographs by Intelisolve v9.25

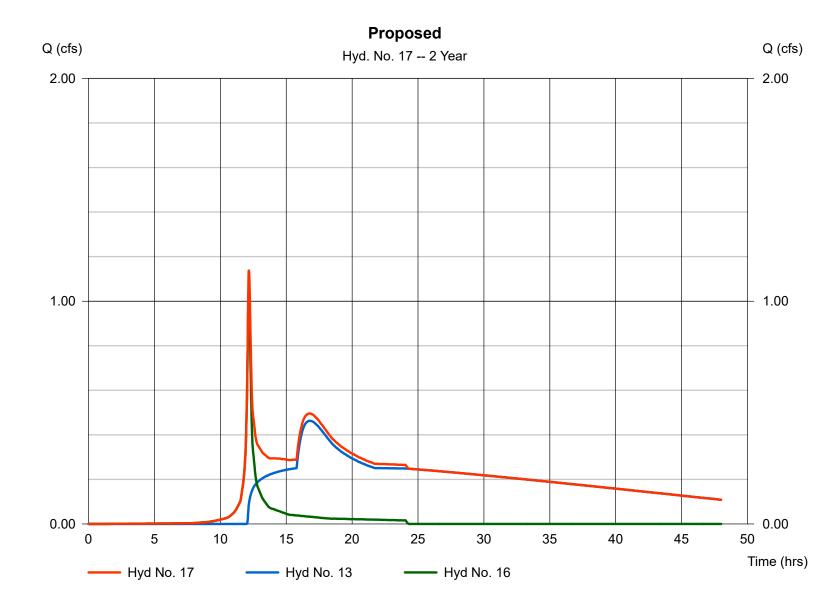

Wednesday, Apr 16, 2025

Hyd. No. 16

Prop - Bypass

Hydrograph type = Combine Storm frequency = 2 yrs Time interval = 1 min Inflow hyds. = 14, 15

Peak discharge = 1.047 cfs
Time to peak = 12.17 hrs
Hyd. volume = 3,725 cuft
Contrib. drain. area = 0.468 ac


Hydraflow Hydrographs by Intelisolve v9.25

Wednesday, Apr 16, 2025

Hyd. No. 17

Proposed

Hydrograph type = Combine Storm frequency = 2 yrs Time interval = 1 min Inflow hyds. = 13, 16 Peak discharge = 1.138 cfs Time to peak = 12.17 hrs Hyd. volume = 31,794 cuft Contrib. drain. area = 0.000 ac

Hydrograph Summary Report

Hydraflow Hydrographs by Intelisolve v9.25

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph description
1	SCS Runoff	9.272	1	734	36,754				Existing
2	SCS Runoff	1.555	1	729	4,916				Prop - Basin 1 (Perv)
3	SCS Runoff	2.951	1	726	8,763				Prop - Basin 1 (Imp)
4	Combine	4.360	1	726	13,679	2, 3			Prop - Basin 1
5	Reservoir	1.772	1	735	10,778	4	76.68	6,839	Route 1
6	SCS Runoff	1.896	1	732	6,904				Prop - Basin 2 (Perv)
7	SCS Runoff	1.891	1	731	7,959				Prop - Basin 2 (Imp)
8	Combine	3.784	1	732	14,863	6, 7			Prop - Basin 2
9	Reservoir	0.932	1	757	12,553	8	73.98	7,523	Route 2
10	SCS Runoff	4.015	1	735	16,710				Prop - Basin 3 (Perv)
11	SCS Runoff	12.55	1	726	38,061				Prop - Basin 3 (Imp)
12	Combine	16.38	1	727	78,102	5, 9, 10,			Prop - Basin 3
13	Reservoir	4.754	1	756	60,644	11 12	69.30	36,486	Route 3
14	SCS Runoff	1.676	1	731	5,846				Prop - Bypass (Perv)
15	SCS Runoff	0.283	1	727	926				Prop - Bypass (Imp)
16	Combine	1.890	1	730	6,772	14, 15			Prop - Bypass
17	Combine	5.204	1	755	67,416	13, 16			Proposed
21-210 (F).gpw					Return Period: 10 Year			Wednesda	y, Apr 16, 2025

Hydraflow Hydrographs by Intelisolve v9.25

Wednesday, Apr 16, 2025

= 9.272 cfs

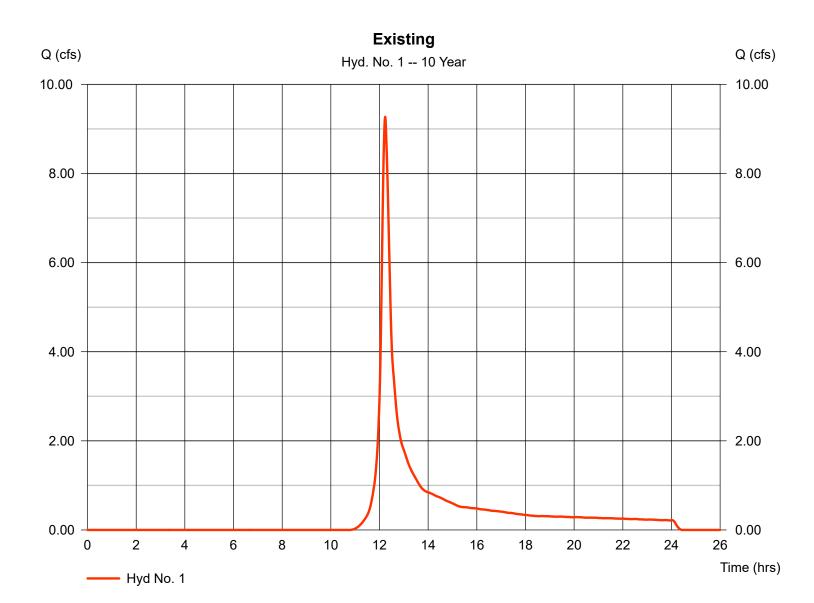
 $= 12.23 \, hrs$

 $= 16.40 \, \text{min}$

= Custom = 484

= 61*

= 0 ft


= 36,754 cuft

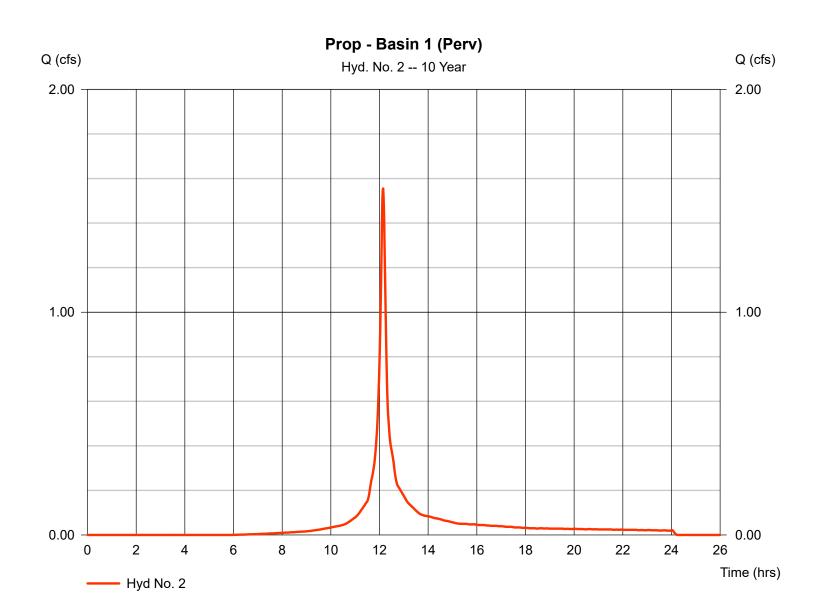
Hyd. No. 1

Existing

Hydrograph type = SCS Runoff Peak discharge Storm frequency Time to peak = 10 yrsTime interval = 1 min Hyd. volume Drainage area = 5.229 acCurve number Basin Slope = 0.0 % Hydraulic length Tc method = TR55 Time of conc. (Tc) Distribution Total precip. = 5.86 inStorm duration = NOAA C.cds Shape factor

^{*} Composite (Area/CN) = [(2.998 x 55) + (2.231 x 70)] / 5.229

Hydraflow Hydrographs by Intelisolve v9.25


Wednesday, Apr 16, 2025

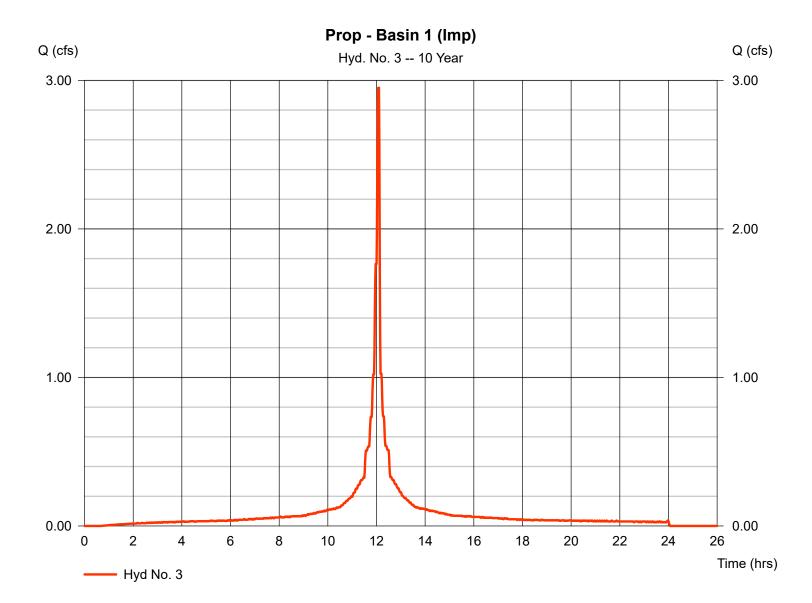
Hyd. No. 2

Prop - Basin 1 (Perv)

Hydrograph type = SCS Runoff Peak discharge = 1.555 cfsStorm frequency = 10 yrsTime to peak $= 12.15 \, hrs$ Time interval = 1 min Hyd. volume = 4,916 cuft Drainage area = 0.351 acCurve number = 82* Basin Slope = 0.0 % Hydraulic length = 0 ftTc method = TR55 Time of conc. (Tc) $= 9.20 \, \text{min}$ Total precip. = 5.86 inDistribution = Custom = 484 Storm duration = NOAA C.cds Shape factor

^{*} Composite (Area/CN) = [(0.196 x 79) + (0.155 x 86)] / 0.351

Hydraflow Hydrographs by Intelisolve v9.25

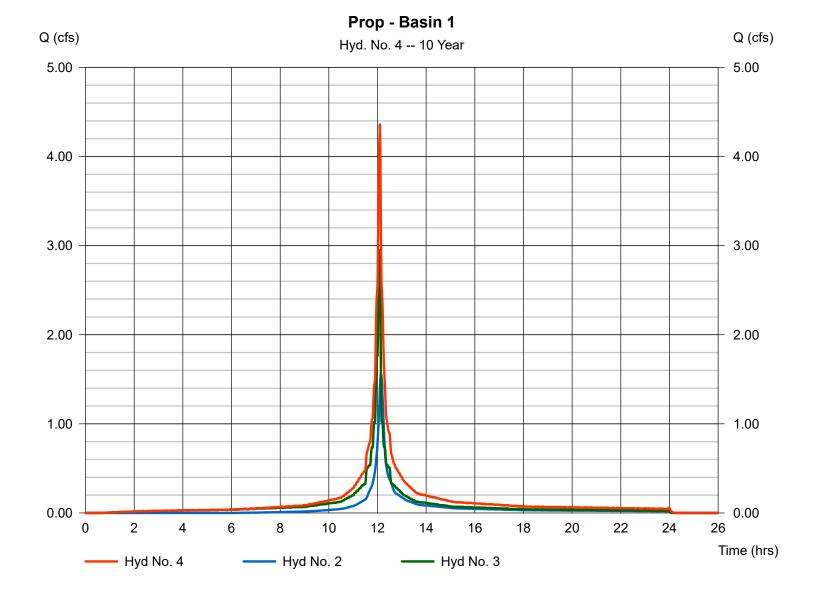

Wednesday, Apr 16, 2025

Hyd. No. 3

Prop - Basin 1 (Imp)

Hydrograph type = SCS Runoff Storm frequency = 10 yrsTime interval = 1 min Drainage area = 0.458 acBasin Slope = 0.0 % Tc method = TR55 Total precip. = 5.86 inStorm duration = NOAA C.cds

Peak discharge = 2.951 cfsTime to peak = 12.10 hrsHyd. volume = 8,763 cuft Curve number = 98 Hydraulic length = 0 ftTime of conc. (Tc) $= 1.60 \, \text{min}$ Distribution = Custom = 484 Shape factor


Hydraflow Hydrographs by Intelisolve v9.25

Wednesday, Apr 16, 2025

Hyd. No. 4

Prop - Basin 1

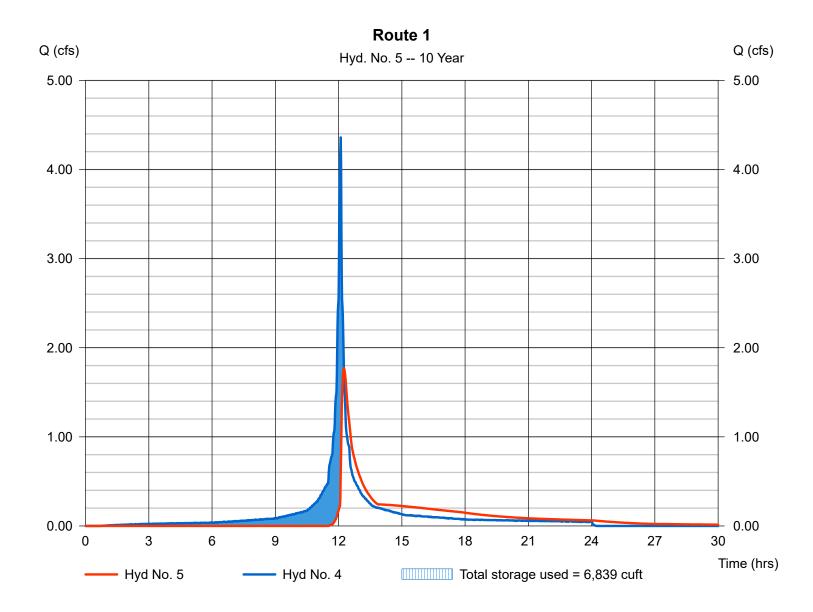
Hydrograph type = Combine Storm frequency = 10 yrs Time interval = 1 min Inflow hyds. = 2, 3 Peak discharge = 4.360 cfs Time to peak = 12.10 hrs Hyd. volume = 13,679 cuft Contrib. drain. area = 0.809 ac

Hydraflow Hydrographs by Intelisolve v9.25

Wednesday, Apr 16, 2025

Hyd. No. 5

Route 1


Hydrograph type = Reservoir Storm frequency = 10 yrs Time interval = 1 min

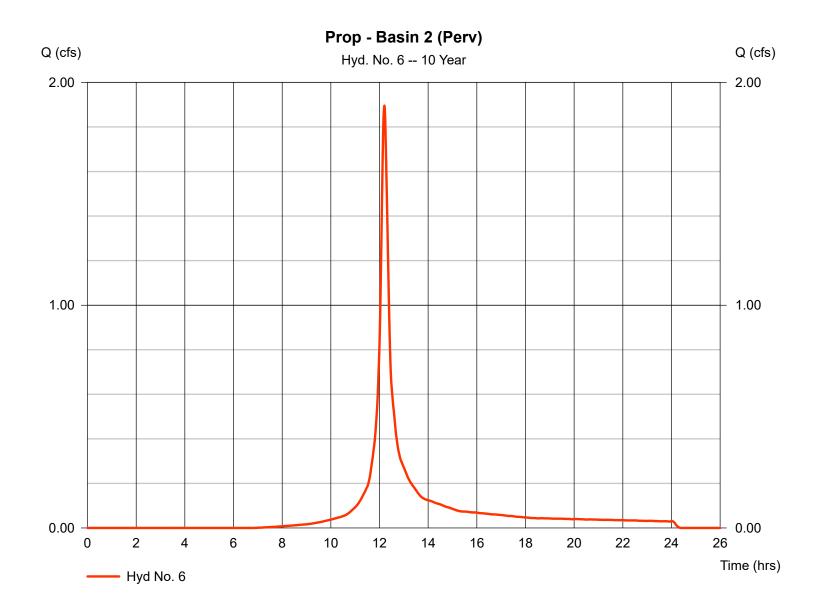
Inflow hyd. No. = 4 - Prop - Basin 1

Reservoir name = Basin 1

Peak discharge = 1.772 cfs
Time to peak = 12.25 hrs
Hyd. volume = 10,778 cuft
Max. Elevation = 76.68 ft
Max. Storage = 6,839 cuft

Storage Indication method used.

Hydraflow Hydrographs by Intelisolve v9.25


Wednesday, Apr 16, 2025

Hyd. No. 6

Prop - Basin 2 (Perv)

Hydrograph type = SCS Runoff Storm frequency = 10 yrsTime interval = 1 min Drainage area = 0.535 acBasin Slope = 0.0 % Tc method = TR55 Total precip. = 5.86 inStorm duration = NOAA C.cds

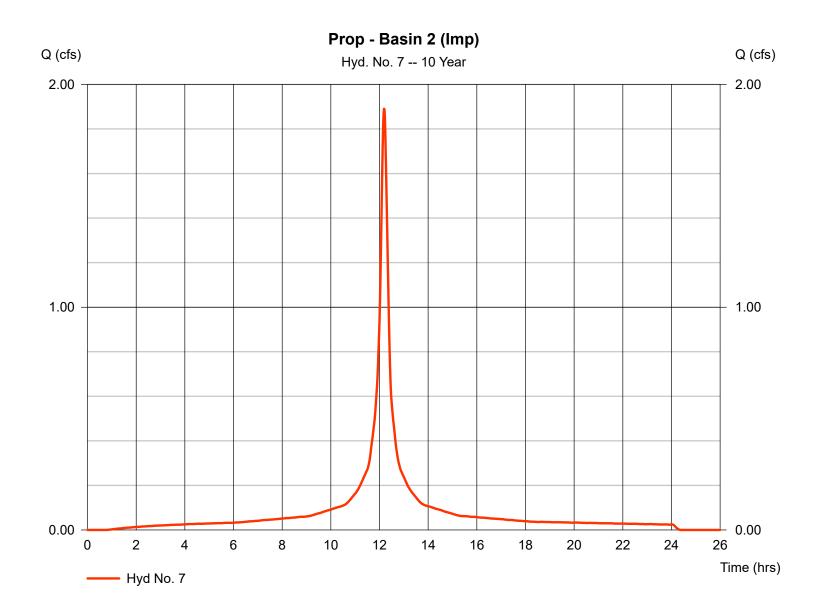
Peak discharge = 1.896 cfsTime to peak = 12.20 hrsHyd. volume = 6,904 cuftCurve number = 79 Hydraulic length = 0 ftTime of conc. (Tc) = 14.10 minDistribution = Custom = 484 Shape factor

Hydraflow Hydrographs by Intelisolve v9.25

Wednesday, Apr 16, 2025

Hyd. No. 7

Prop - Basin 2 (Imp)

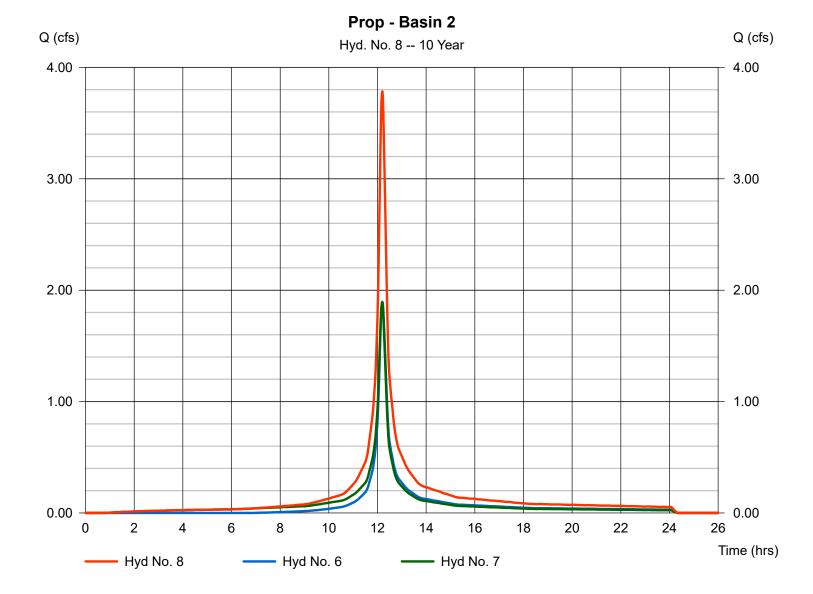

Hydrograph type = SCS Runoff
Storm frequency = 10 yrs
Time interval = 1 min
Drainage area = 0.390 ac
Basin Slope = 0.0 %
Tc method = TR55
Total precip. = 5.86 in

Storm duration = NOAA C.cds

Peak discharge = 1.891 cfs
Time to peak = 12.18 hrs
Hyd. volume = 7,959 cuft
Curve number = 98

Curve number = 98 Hydraulic length = 0 ft

Time of conc. (Tc) = 13.70 min
Distribution = Custom
Shape factor = 484


Hydraflow Hydrographs by Intelisolve v9.25

Wednesday, Apr 16, 2025

Hyd. No. 8

Prop - Basin 2

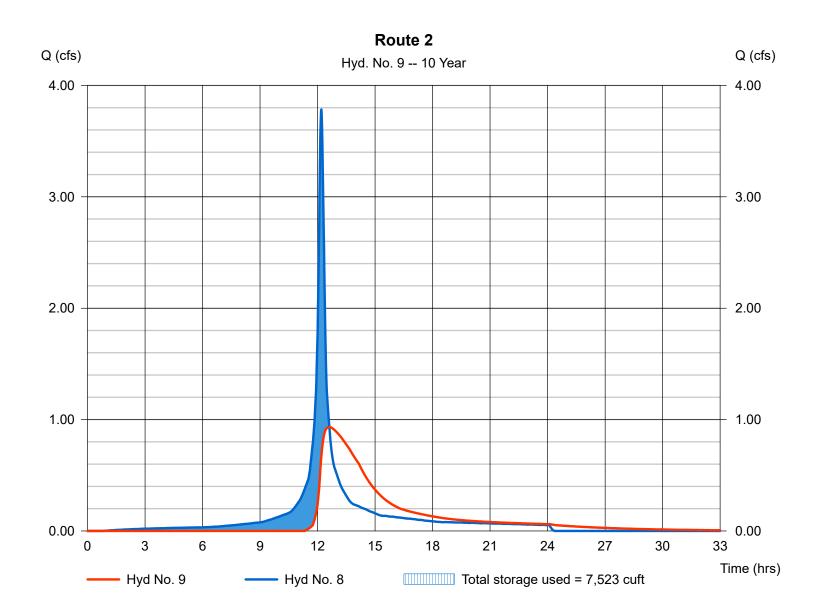
Hydrograph type = Combine Storm frequency = 10 yrs Time interval = 1 min Inflow hyds. = 6, 7 Peak discharge = 3.784 cfs Time to peak = 12.20 hrs Hyd. volume = 14,863 cuft Contrib. drain. area = 0.925 ac

Hydraflow Hydrographs by Intelisolve v9.25

Wednesday, Apr 16, 2025

Hyd. No. 9

Route 2


Hydrograph type = Reservoir Storm frequency = 10 yrs Time interval = 1 min

Inflow hyd. No. = 8 - Prop - Basin 2

Reservoir name = Basin 2

Peak discharge = 0.932 cfs
Time to peak = 12.62 hrs
Hyd. volume = 12,553 cuft
Max. Elevation = 73.98 ft
Max. Storage = 7,523 cuft

Storage Indication method used.

Hydraflow Hydrographs by Intelisolve v9.25

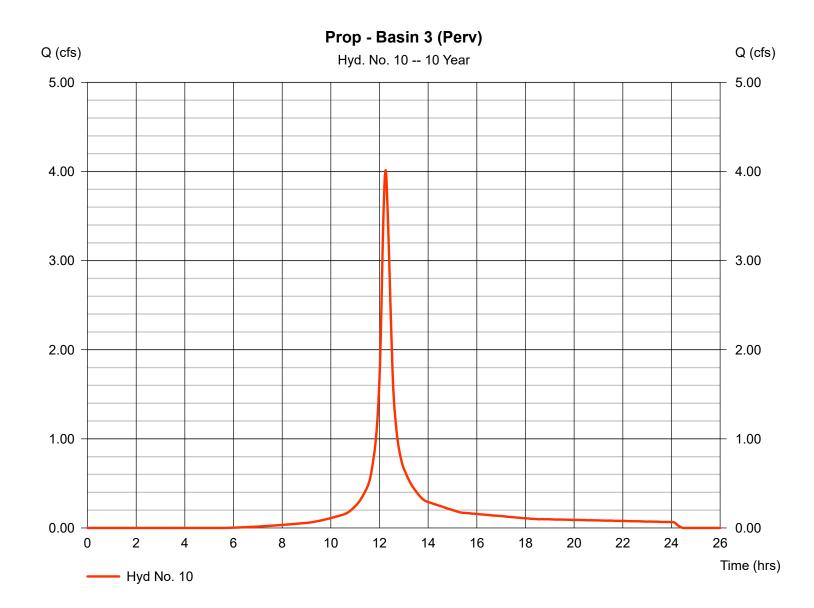
Wednesday, Apr 16, 2025

= 484

Hyd. No. 10

Storm duration

Prop - Basin 3 (Perv)


Hydrograph type = SCS Runoff Peak discharge = 4.015 cfsStorm frequency = 10 yrsTime to peak $= 12.25 \, hrs$ Time interval = 1 min Hyd. volume = 16,710 cuftDrainage area = 1.162 acCurve number = 83* Basin Slope = 0.0 % Hydraulic length = 0 ftTc method = TR55 Time of conc. (Tc) $= 19.00 \, \text{min}$ Total precip. = 5.86 inDistribution = Custom

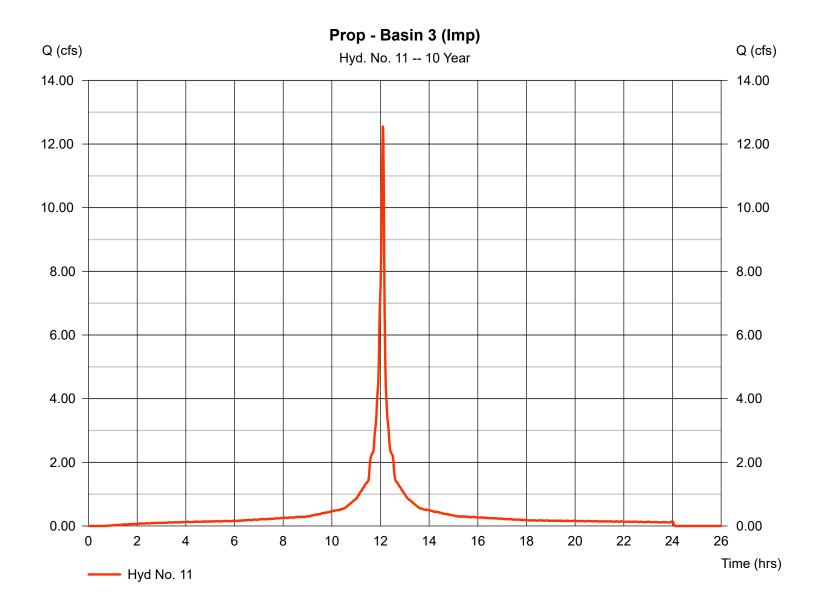
Shape factor

_

= NOAA C.cds

^{*} Composite (Area/CN) = [(0.456 x 79) + (0.706 x 86)] / 1.162

Hydraflow Hydrographs by Intelisolve v9.25

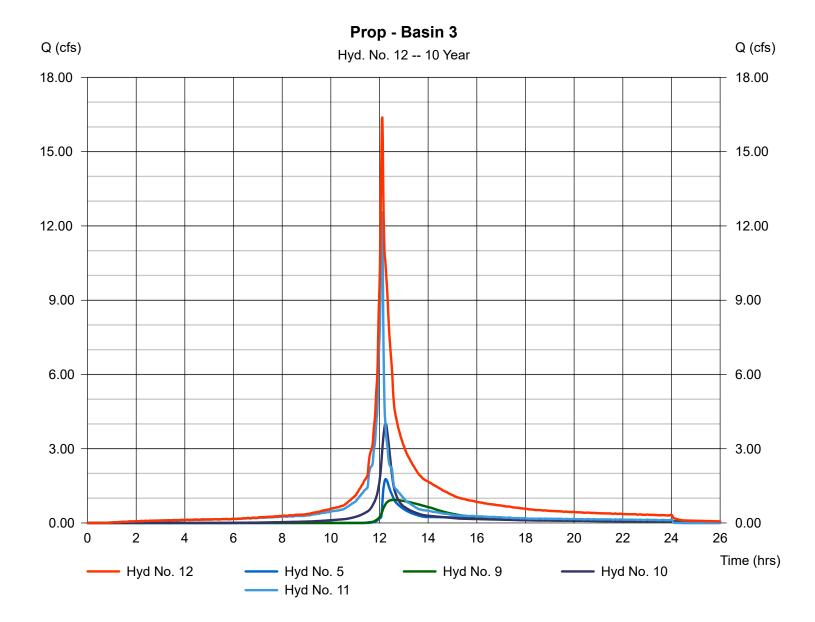

Wednesday, Apr 16, 2025

Hyd. No. 11

Prop - Basin 3 (Imp)

Hydrograph type = SCS Runoff Storm frequency = 10 yrsTime interval = 1 min Drainage area = 1.865 acBasin Slope = 0.0 % Tc method = TR55 Total precip. = 5.86 inStorm duration = NOAA C.cds

Peak discharge = 12.55 cfsTime to peak = 12.10 hrsHyd. volume = 38,061 cuftCurve number = 98 Hydraulic length = 0 ftTime of conc. (Tc) $= 3.90 \, \text{min}$ Distribution = Custom = 484 Shape factor


Hydraflow Hydrographs by Intelisolve v9.25

Wednesday, Apr 16, 2025

Hyd. No. 12

Prop - Basin 3

Hydrograph type = Combine Storm frequency = 10 yrs Time interval = 1 min Inflow hyds. = 5, 9, 10, 11 Peak discharge = 16.38 cfs
Time to peak = 12.12 hrs
Hyd. volume = 78,102 cuft
Contrib. drain. area = 3.027 ac

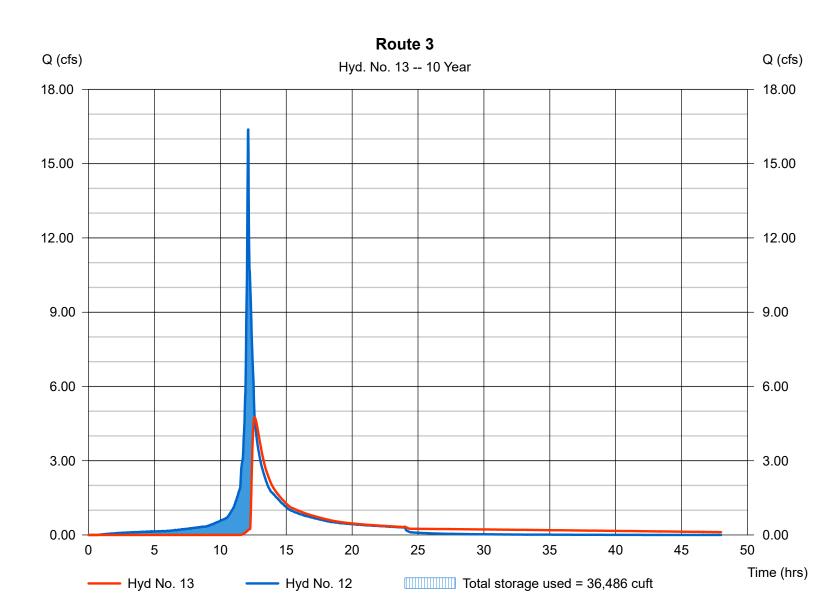
= Basin 3

Hydraflow Hydrographs by Intelisolve v9.25

Wednesday, Apr 16, 2025

= 36,486 cuft

Hyd. No. 13


Route 3

Hydrograph type = 4.754 cfs= Reservoir Peak discharge Storm frequency Time to peak = 10 yrs $= 12.60 \, hrs$ Time interval = 1 min Hyd. volume = 60,644 cuft Max. Elevation Inflow hyd. No. = 12 - Prop - Basin 3 = 69.30 ft

Max. Storage

Storage Indication method used.

Reservoir name

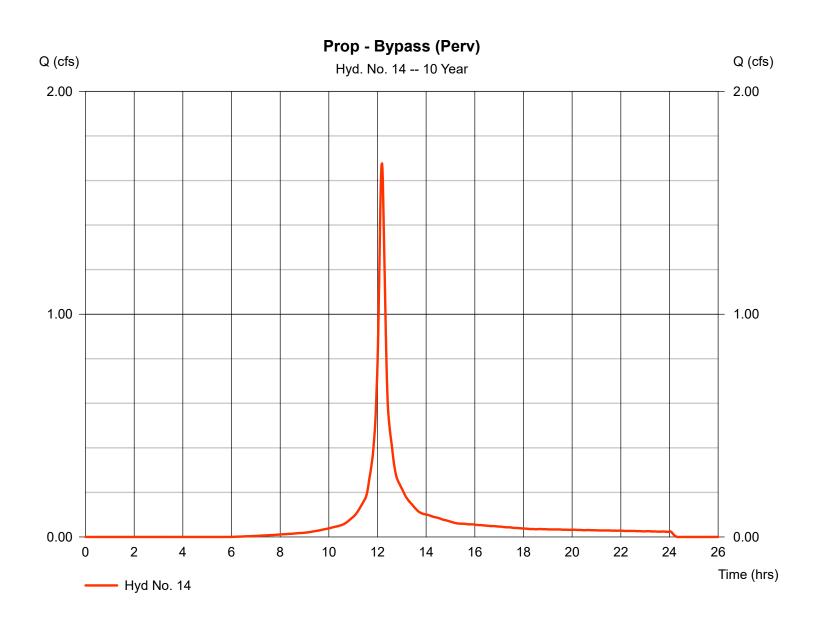
Hydraflow Hydrographs by Intelisolve v9.25

Wednesday, Apr 16, 2025

Hyd. No. 14

Prop - Bypass (Perv)

Hydrograph type = SCS Runoff
Storm frequency = 10 yrs
Time interval = 1 min
Drainage area = 0.424 ac
Basin Slope = 0.0 %
Tc method = TR55
Total precip. = 5.86 in


Storm duration = NOAA C.cds

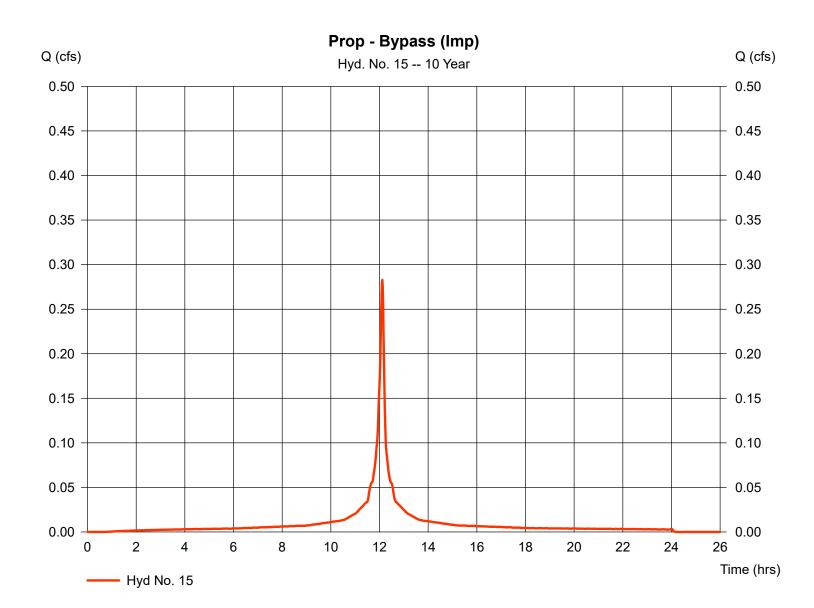
Peak discharge = 1.676 cfs
Time to peak = 12.18 hrs
Hyd. volume = 5,846 cuft
Curve number = 82*

Curve number = 82* Hydraulic length = 0 ft

Time of conc. (Tc) = 11.80 min
Distribution = Custom
Shape factor = 484

^{*} Composite (Area/CN) = [(0.214 x 79) + (0.210 x 86)] / 0.424

Hydraflow Hydrographs by Intelisolve v9.25

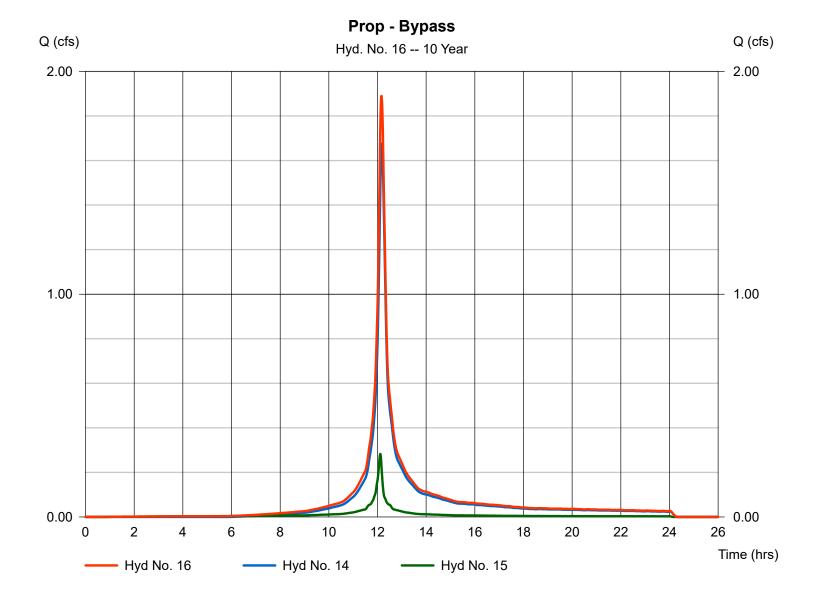

Wednesday, Apr 16, 2025

Hyd. No. 15

Prop - Bypass (Imp)

Hydrograph type = SCS Runoff Storm frequency = 10 yrsTime interval = 1 min Drainage area = 0.044 acBasin Slope = 0.0 % Tc method = TR55 Total precip. = 5.86 inStorm duration = NOAA C.cds

Peak discharge = 0.283 cfsTime to peak $= 12.12 \, hrs$ Hyd. volume = 926 cuft Curve number = 98 Hydraulic length = 0 ftTime of conc. (Tc) $= 6.50 \, \text{min}$ Distribution = Custom = 484 Shape factor

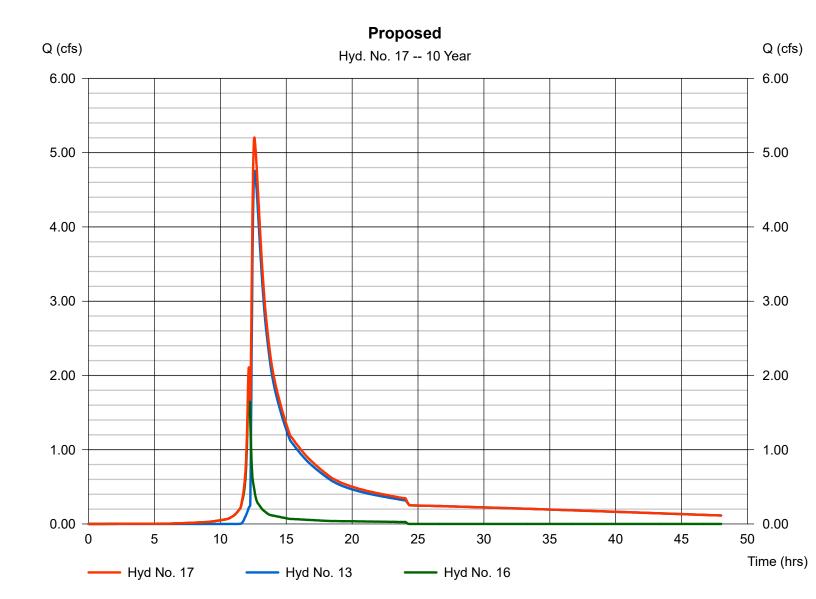

Hydraflow Hydrographs by Intelisolve v9.25

Wednesday, Apr 16, 2025

Hyd. No. 16

Prop - Bypass

Hydrograph type = Combine Storm frequency = 10 yrs Time interval = 1 min Inflow hyds. = 14, 15 Peak discharge = 1.890 cfs
Time to peak = 12.17 hrs
Hyd. volume = 6,772 cuft
Contrib. drain. area = 0.468 ac


Hydraflow Hydrographs by Intelisolve v9.25

Wednesday, Apr 16, 2025

Hyd. No. 17

Proposed

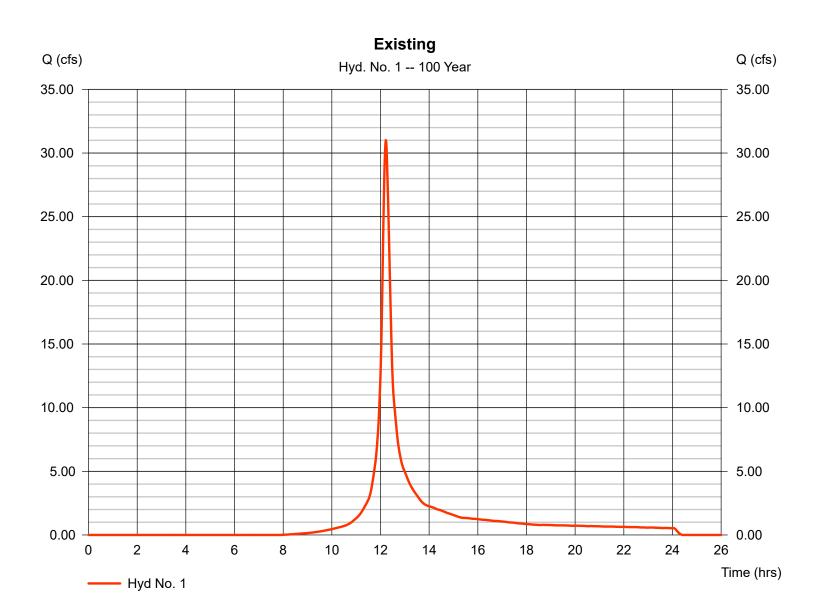
Hydrograph type = Combine Storm frequency = 10 yrs Time interval = 1 min Inflow hyds. = 13, 16 Peak discharge = 5.204 cfs Time to peak = 12.58 hrs Hyd. volume = 67,416 cuft Contrib. drain. area = 0.000 ac

Hydrograph Summary Report

Hydraflow Hydrographs by Intelisolve v9.25

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph description
1	SCS Runoff	31.01	1	733	118,070				Existing
2	SCS Runoff	3.489	1	728	11,549				Prop - Basin 1 (Perv)
3	SCS Runoff	5.720	1	726	17,283				Prop - Basin 1 (Imp)
4	Combine	8.928	1	726	28,832	2, 3			Prop - Basin 1
5	Reservoir	7.044	1	728	25,924	4	76.99	8,685	Route 1
6	SCS Runoff	4.455	1	732	16,828				Prop - Basin 2 (Perv)
7	SCS Runoff	3.667	1	731	15,698				Prop - Basin 2 (Imp)
8	Combine	8.116	1	732	32,527	6, 7			Prop - Basin 2
9	Reservoir	4.684	1	742	30,217	8	74.50	12,151	Route 2
10	SCS Runoff	8.946	1	735	38,788				Prop - Basin 3 (Perv)
11	SCS Runoff	24.34	1	726	75,070				Prop - Basin 3 (Imp)
12	Combine	38.98	1	727	169,999	5, 9, 10,			Prop - Basin 3
13	Reservoir	21.73	1	741	152,108	11 12	70.49	55,769	Route 3
14	SCS Runoff	3.770	1	730	13,733				Prop - Bypass (Perv)
15	SCS Runoff	0.549	1	727	1,826				Prop - Bypass (Imp)
16	Combine	4.196	1	729	15,559	14, 15			Prop - Bypass
17	Combine	24.32	1	736	167,667	13, 16			Proposed
21-210 (F).gpw					Return Period: 100 Year			Wednesda	y, Apr 16, 2025

Hydraflow Hydrographs by Intelisolve v9.25


Wednesday, Apr 16, 2025

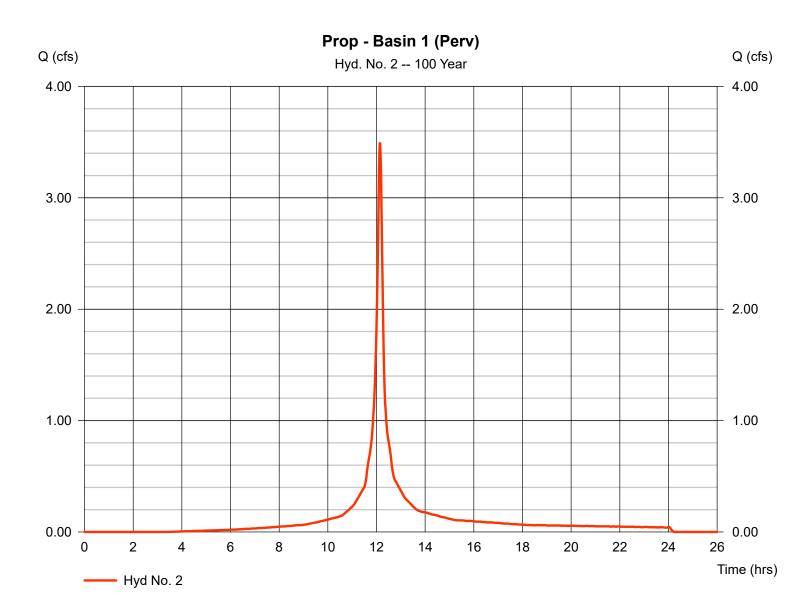
Hyd. No. 1

Existing

Hydrograph type = SCS Runoff Peak discharge = 31.01 cfsStorm frequency Time to peak = 100 yrs $= 12.22 \, hrs$ Time interval = 1 min Hyd. volume = 118,070 cuftDrainage area = 5.229 acCurve number = 61* Basin Slope = 0.0 % Hydraulic length = 0 ftTc method = TR55 Time of conc. (Tc) = 16.40 min Distribution Total precip. = 11.33 in= Custom = 484 Storm duration = NOAA C.cds Shape factor

^{*} Composite (Area/CN) = [(2.998 x 55) + (2.231 x 70)] / 5.229

Hydraflow Hydrographs by Intelisolve v9.25


Wednesday, Apr 16, 2025

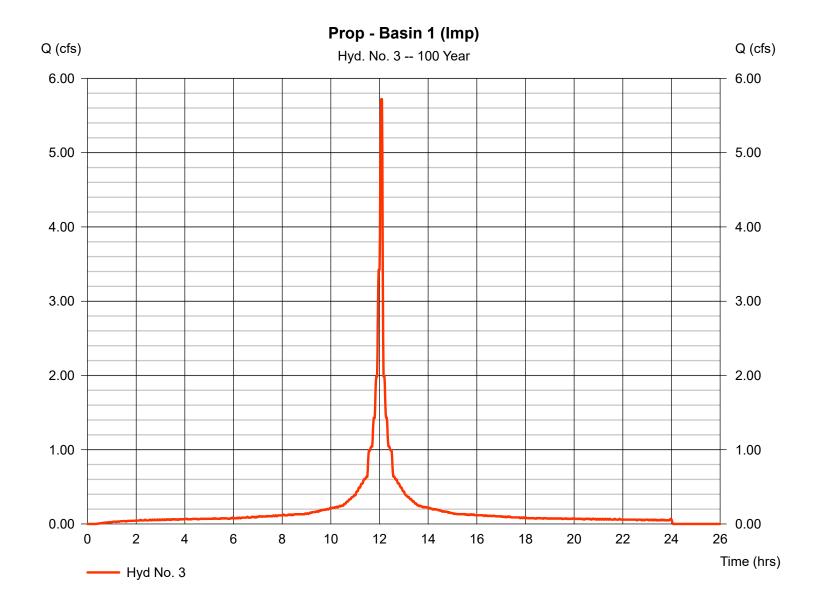
Hyd. No. 2

Prop - Basin 1 (Perv)

Hydrograph type = SCS Runoff Peak discharge = 3.489 cfsStorm frequency Time to peak = 100 yrs $= 12.13 \, hrs$ Time interval = 1 min Hyd. volume = 11,549 cuftDrainage area = 0.351 acCurve number = 82* Basin Slope = 0.0 % Hydraulic length = 0 ftTc method = TR55 Time of conc. (Tc) $= 9.20 \, \text{min}$ Distribution Total precip. = 11.33 in= Custom Storm duration = NOAA C.cds Shape factor = 484

^{*} Composite (Area/CN) = [(0.196 x 79) + (0.155 x 86)] / 0.351

Hydraflow Hydrographs by Intelisolve v9.25

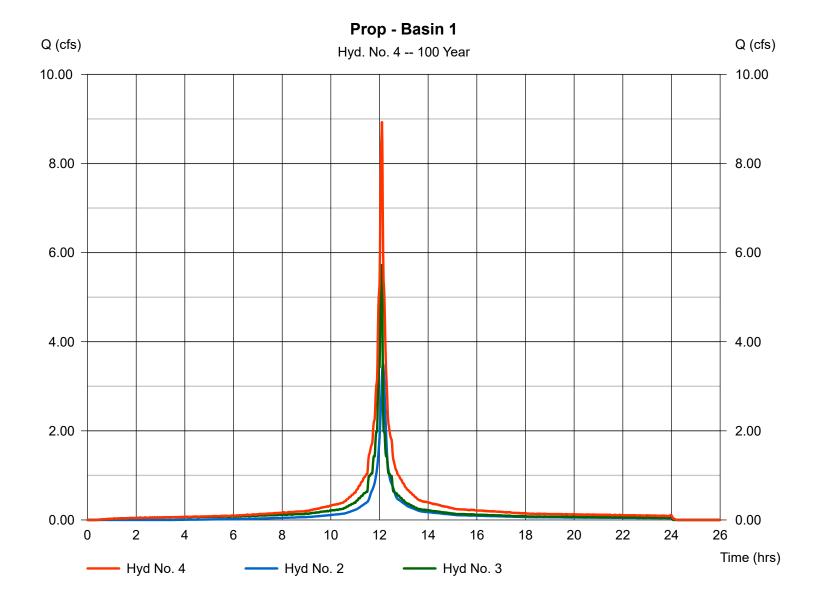

Wednesday, Apr 16, 2025

Hyd. No. 3

Prop - Basin 1 (Imp)

Hydrograph type = SCS Runoff Storm frequency = 100 yrsTime interval = 1 min Drainage area = 0.458 acBasin Slope = 0.0 % Tc method = TR55 Total precip. = 11.33 inStorm duration = NOAA C.cds

Peak discharge = 5.720 cfsTime to peak = 12.10 hrsHyd. volume = 17,283 cuft Curve number = 98 Hydraulic length = 0 ftTime of conc. (Tc) $= 1.60 \, \text{min}$ Distribution = Custom = 484 Shape factor


Hydraflow Hydrographs by Intelisolve v9.25

Wednesday, Apr 16, 2025

Hyd. No. 4

Prop - Basin 1

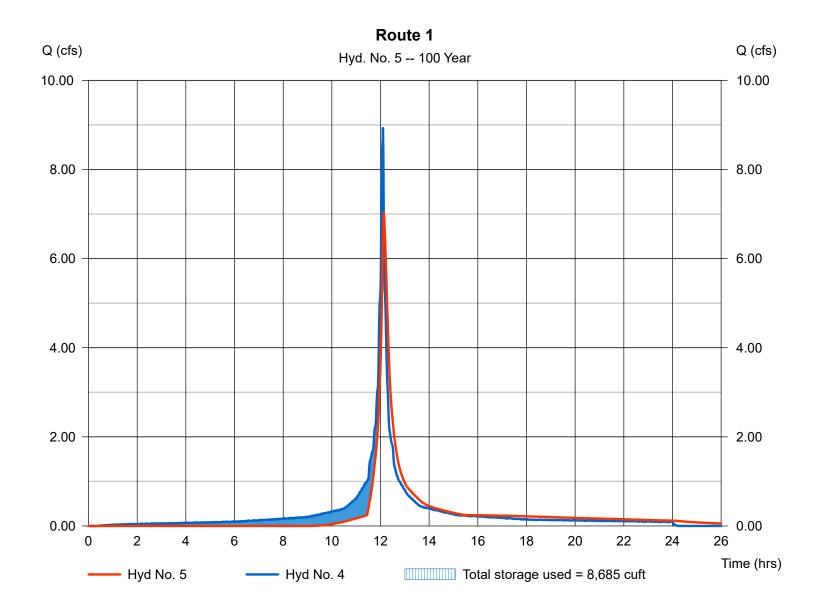
Hydrograph type = Combine Storm frequency = 100 yrs Time interval = 1 min Inflow hyds. = 2, 3 Peak discharge = 8.928 cfs Time to peak = 12.10 hrs Hyd. volume = 28,832 cuft Contrib. drain. area = 0.809 ac

Hydraflow Hydrographs by Intelisolve v9.25

Wednesday, Apr 16, 2025

Hyd. No. 5

Route 1

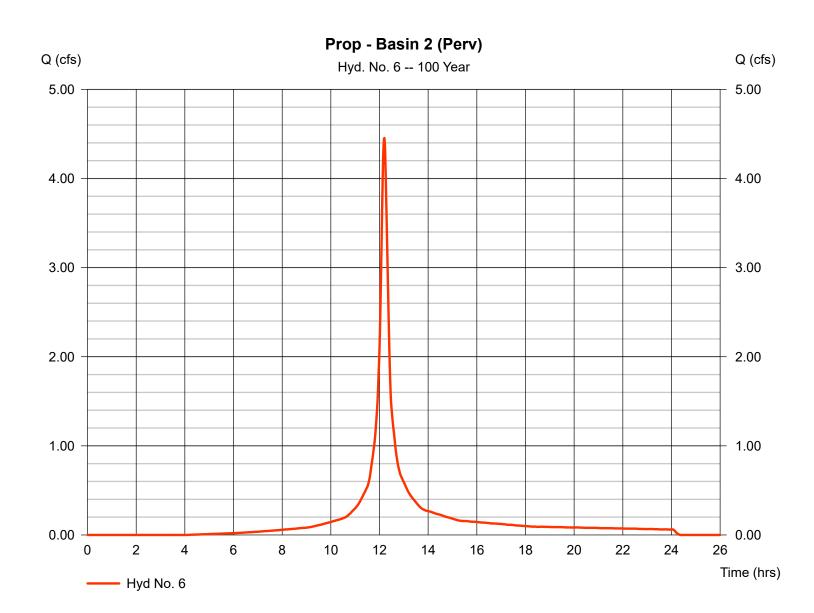

Hydrograph type = Reservoir Storm frequency = 100 yrs Time interval = 1 min

Inflow hyd. No. = 4 - Prop - Basin 1

Reservoir name = Basin 1

Peak discharge = 7.044 cfs
Time to peak = 12.13 hrs
Hyd. volume = 25,924 cuft
Max. Elevation = 76.99 ft
Max. Storage = 8,685 cuft

Storage Indication method used.


Hydraflow Hydrographs by Intelisolve v9.25

Wednesday, Apr 16, 2025

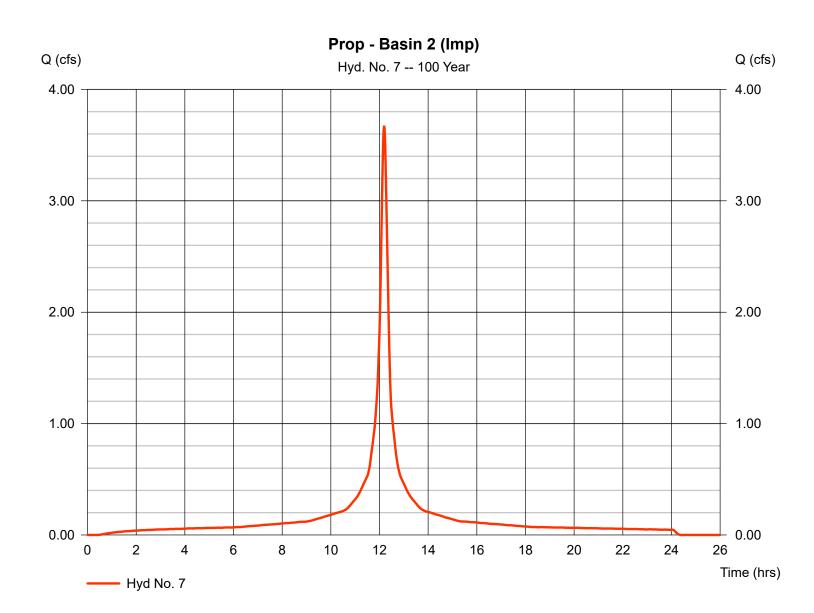
Hyd. No. 6

Prop - Basin 2 (Perv)

Hydrograph type = SCS Runoff Peak discharge = 4.455 cfsStorm frequency Time to peak = 100 yrs $= 12.20 \, hrs$ Time interval = 1 min Hyd. volume = 16,828 cuft Drainage area = 0.535 acCurve number = 79 Basin Slope = 0.0 % Hydraulic length = 0 ftTc method = TR55 Time of conc. (Tc) = 14.10 minTotal precip. = 11.33 inDistribution = Custom Storm duration = NOAA C.cds Shape factor = 484

Hydraflow Hydrographs by Intelisolve v9.25

Wednesday, Apr 16, 2025

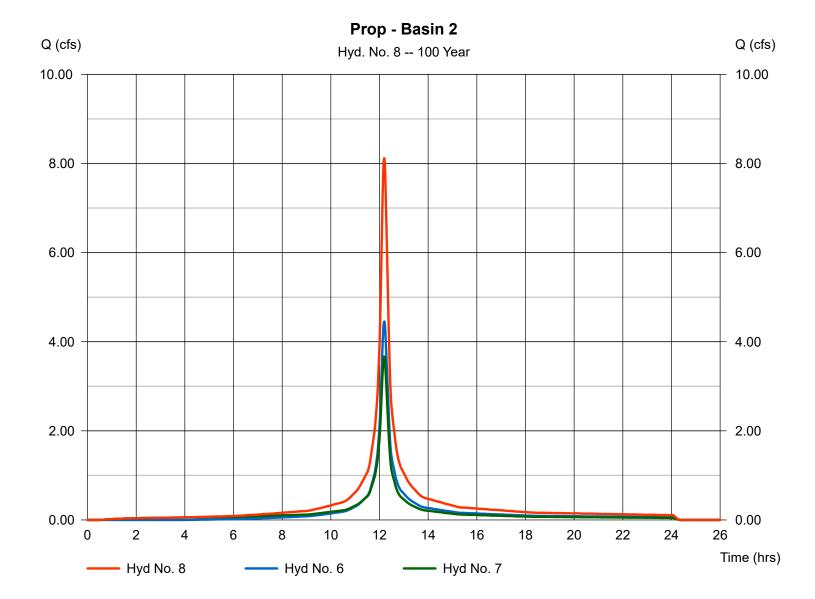

Hyd. No. 7

Prop - Basin 2 (Imp)

Hydrograph type = SCS Runoff Storm frequency = 100 yrsTime interval = 1 min Drainage area = 0.390 acBasin Slope = 0.0 % Tc method = TR55 Total precip. = 11.33 inStorm duration = NOAA C.cds Peak discharge = 3.667 cfs
Time to peak = 12.18 hrs
Hyd. volume = 15,698 cuft
Curve number = 98

Curve number = 98 Hydraulic length = 0 ft

Time of conc. (Tc) = 13.70 min
Distribution = Custom
Shape factor = 484


Hydraflow Hydrographs by Intelisolve v9.25

Wednesday, Apr 16, 2025

Hyd. No. 8

Prop - Basin 2

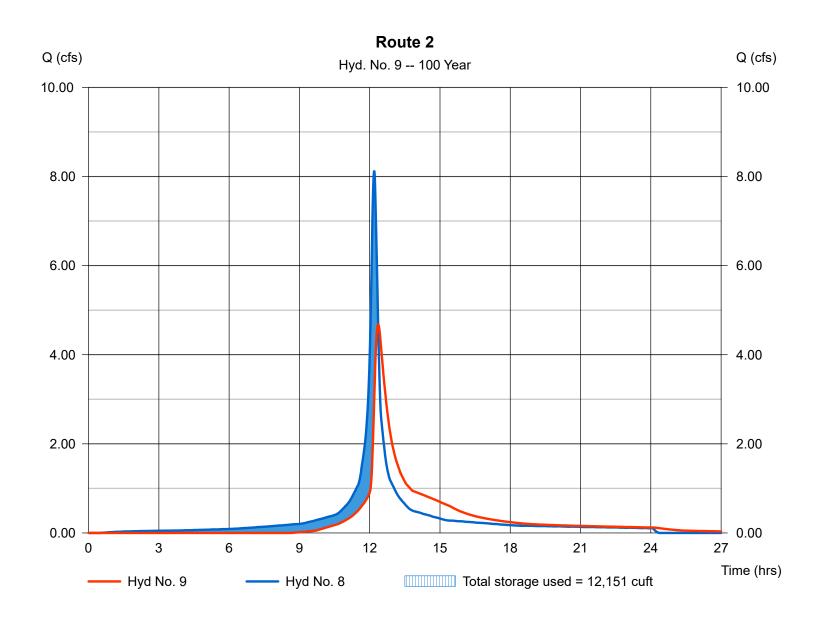
Hydrograph type = Combine Storm frequency = 100 yrs Time interval = 1 min Inflow hyds. = 6, 7 Peak discharge = 8.116 cfs Time to peak = 12.20 hrs Hyd. volume = 32,527 cuft Contrib. drain. area = 0.925 ac

Hydraflow Hydrographs by Intelisolve v9.25

Wednesday, Apr 16, 2025

Hyd. No. 9

Route 2


Hydrograph type = Reservoir Storm frequency = 100 yrs Time interval = 1 min

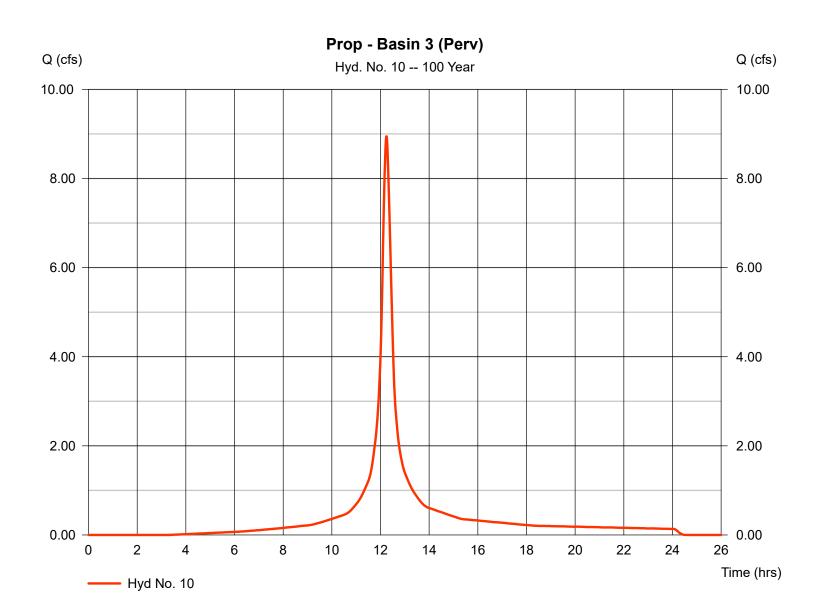
Inflow hyd. No. = 8 - Prop - Basin 2

Reservoir name = Basin 2

Peak discharge = 4.684 cfs
Time to peak = 12.37 hrs
Hyd. volume = 30,217 cuft
Max. Elevation = 74.50 ft
Max. Storage = 12,151 cuft

Storage Indication method used.

Hydraflow Hydrographs by Intelisolve v9.25


Wednesday, Apr 16, 2025

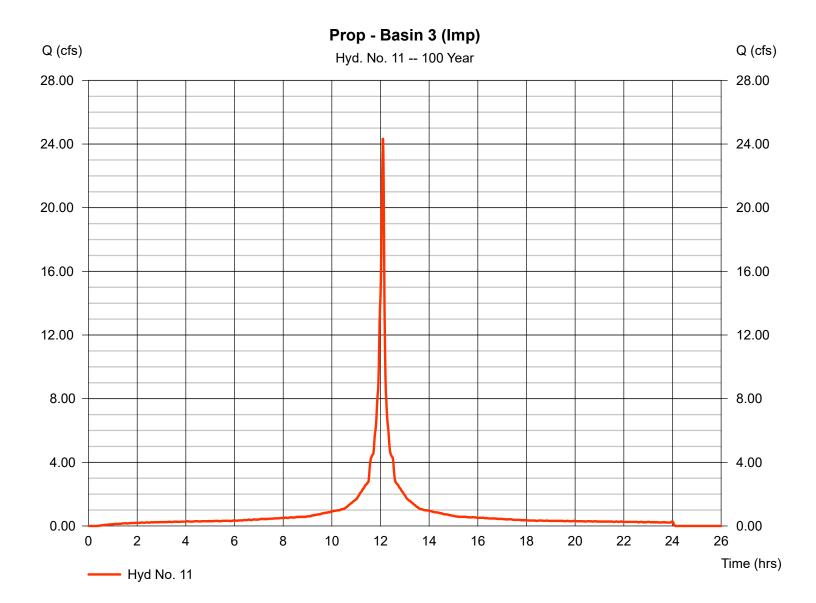
Hyd. No. 10

Prop - Basin 3 (Perv)

Hydrograph type = SCS Runoff Peak discharge = 8.946 cfsStorm frequency Time to peak = 100 yrs $= 12.25 \, hrs$ Time interval = 1 min Hyd. volume = 38,788 cuft Drainage area = 1.162 acCurve number = 83* Basin Slope = 0.0 % Hydraulic length = 0 ftTc method = TR55 Time of conc. (Tc) $= 19.00 \, \text{min}$ Distribution Total precip. = 11.33 in= Custom = 484 Storm duration = NOAA C.cds Shape factor

^{*} Composite (Area/CN) = [(0.456 x 79) + (0.706 x 86)] / 1.162

Hydraflow Hydrographs by Intelisolve v9.25

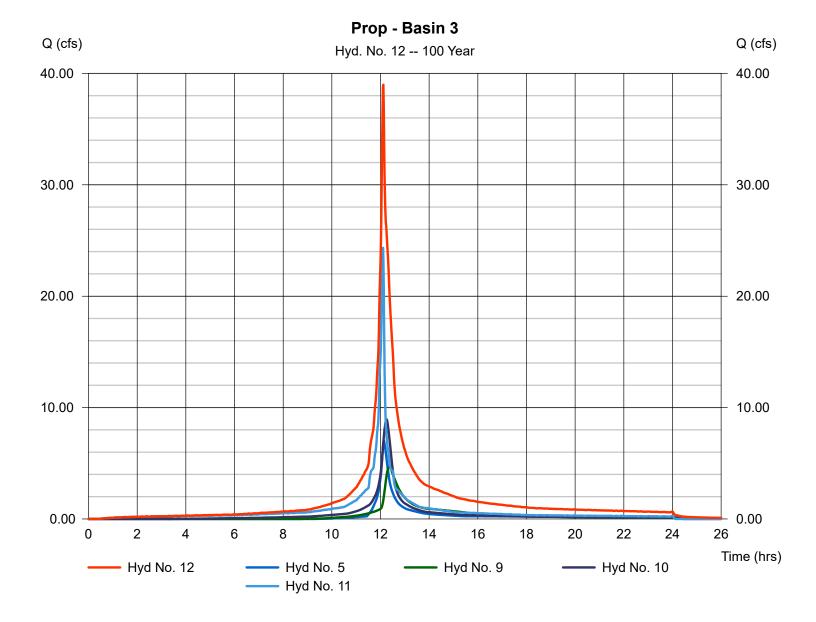

Wednesday, Apr 16, 2025

Hyd. No. 11

Prop - Basin 3 (Imp)

Hydrograph type = SCS Runoff Storm frequency = 100 yrsTime interval = 1 min Drainage area = 1.865 acBasin Slope = 0.0 % Tc method = TR55 Total precip. = 11.33 inStorm duration = NOAA C.cds

Peak discharge = 24.34 cfsTime to peak = 12.10 hrsHyd. volume = 75,070 cuftCurve number = 98 Hydraulic length = 0 ftTime of conc. (Tc) $= 3.90 \, \text{min}$ Distribution = Custom = 484 Shape factor


Hydraflow Hydrographs by Intelisolve v9.25

Wednesday, Apr 16, 2025

Hyd. No. 12

Prop - Basin 3

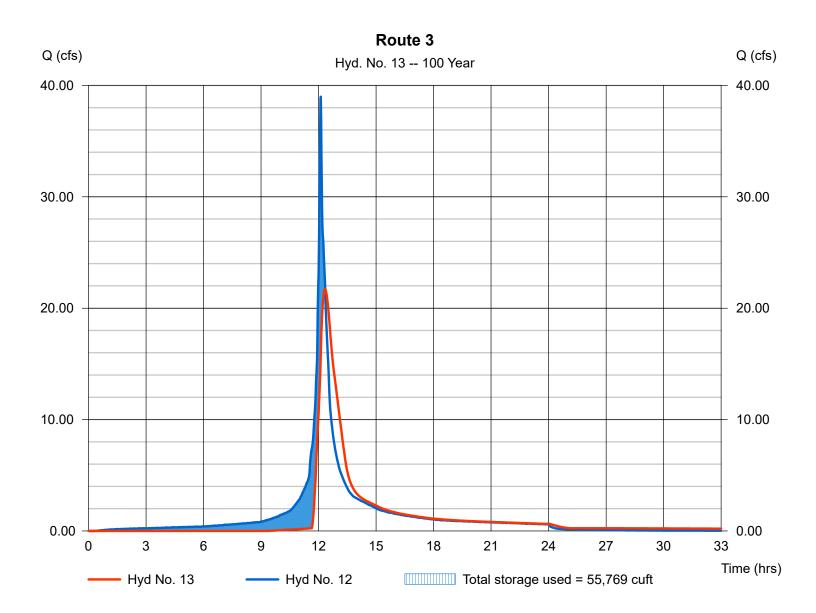
Hydrograph type = Combine Storm frequency = 100 yrs Time interval = 1 min Inflow hyds. = 5, 9, 10, 11 Peak discharge = 38.98 cfs
Time to peak = 12.12 hrs
Hyd. volume = 169,999 cuft
Contrib. drain. area = 3.027 ac

Hydraflow Hydrographs by Intelisolve v9.25

Wednesday, Apr 16, 2025

= 21.73 cfs

 $= 12.35 \, hrs$


Hyd. No. 13

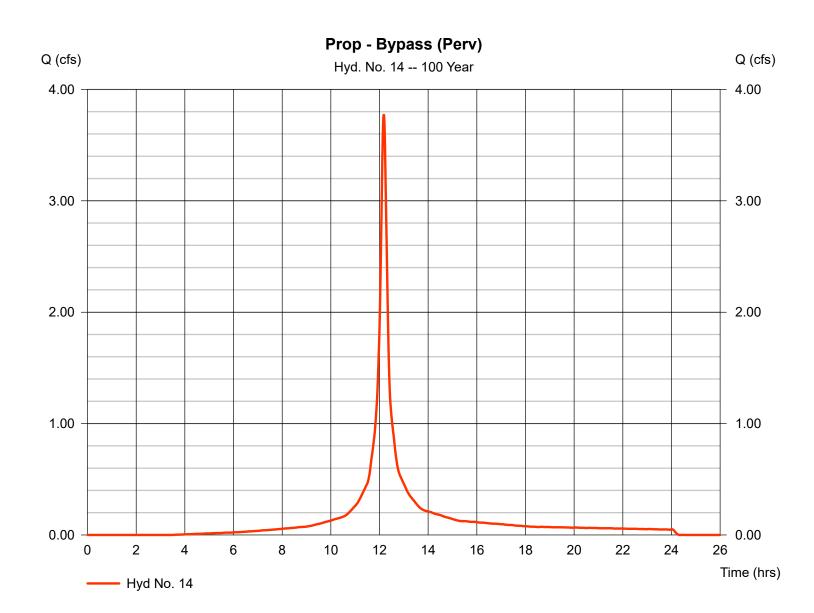
Route 3

Hydrograph type= ReservoirPeak dischargeStorm frequency= 100 yrsTime to peakTime interval= 1 minHyd. volume

Time interval = 1 min Hyd. volume = 152,108 cuft
Inflow hyd. No. = 12 - Prop - Basin 3 Max. Elevation = 70.49 ft
Reservoir name = Basin 3 Max. Storage = 55,769 cuft

Storage Indication method used.

Hydraflow Hydrographs by Intelisolve v9.25


Wednesday, Apr 16, 2025

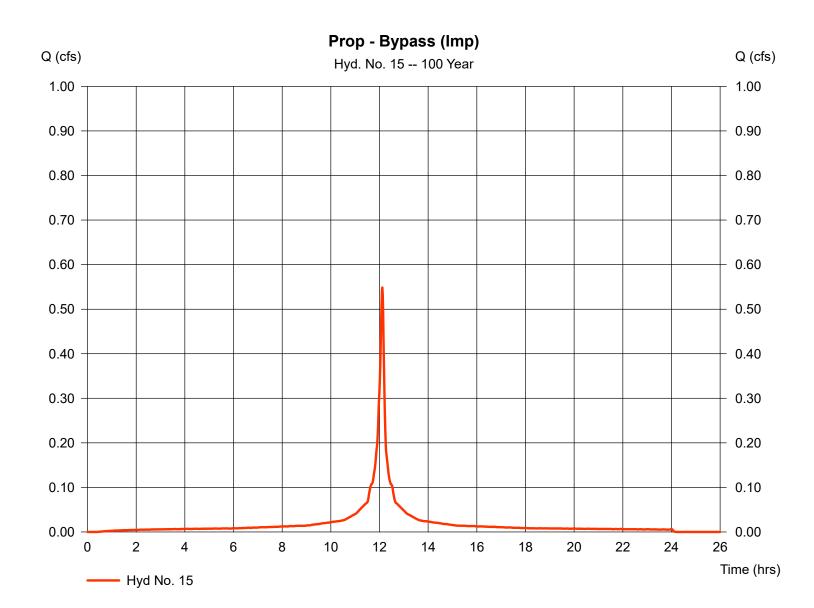
Hyd. No. 14

Prop - Bypass (Perv)

Hydrograph type = SCS Runoff Peak discharge = 3.770 cfsStorm frequency Time to peak = 100 yrs $= 12.17 \, hrs$ Time interval = 1 min Hyd. volume = 13,733 cuft Drainage area = 0.424 acCurve number = 82* Basin Slope = 0.0 % Hydraulic length = 0 ftTc method = TR55 Time of conc. (Tc) = 11.80 min Distribution Total precip. = 11.33 in= Custom Storm duration = NOAA C.cds Shape factor = 484

^{*} Composite (Area/CN) = [(0.214 x 79) + (0.210 x 86)] / 0.424

Hydraflow Hydrographs by Intelisolve v9.25

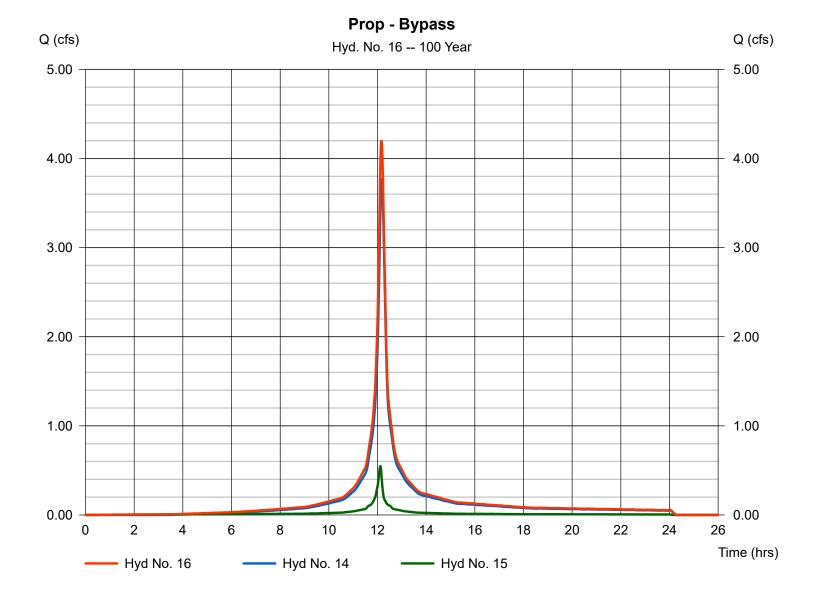

Wednesday, Apr 16, 2025

Hyd. No. 15

Prop - Bypass (Imp)

Hydrograph type = SCS Runoff Storm frequency = 100 yrsTime interval = 1 min Drainage area = 0.044 acBasin Slope = 0.0 % Tc method = TR55 Total precip. = 11.33 inStorm duration = NOAA C.cds

Peak discharge = 0.549 cfsTime to peak $= 12.12 \, hrs$ Hyd. volume = 1,826 cuft Curve number = 98 Hydraulic length = 0 ftTime of conc. (Tc) $= 6.50 \, \text{min}$ Distribution = Custom = 484 Shape factor

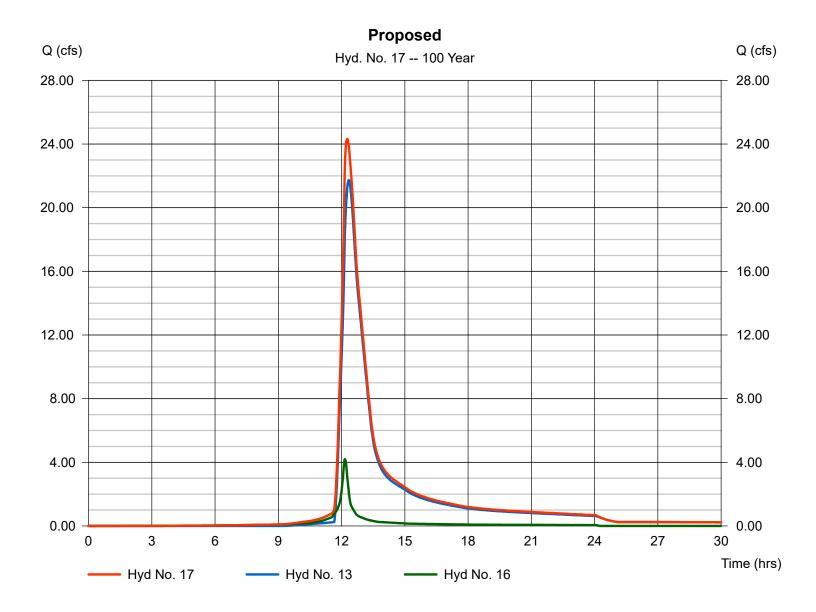

Hydraflow Hydrographs by Intelisolve v9.25

Wednesday, Apr 16, 2025

Hyd. No. 16

Prop - Bypass

Hydrograph type = Combine Storm frequency = 100 yrs Time interval = 1 min Inflow hyds. = 14, 15 Peak discharge = 4.196 cfs
Time to peak = 12.15 hrs
Hyd. volume = 15,559 cuft
Contrib. drain. area = 0.468 ac


Hydraflow Hydrographs by Intelisolve v9.25

Wednesday, Apr 16, 2025

Hyd. No. 17

Proposed

Hydrograph type = Combine Storm frequency = 100 yrs Time interval = 1 min Inflow hyds. = 13, 16 Peak discharge = 24.32 cfs Time to peak = 12.27 hrs Hyd. volume = 167,667 cuft Contrib. drain. area = 0.000 ac

Hydraflow Table of Contents Water Quality

21-210-wq.gpw

Hydraflow Hydrographs by Intelisolve v9.25

Wednesday, Apr 16, 2025

1 - Year

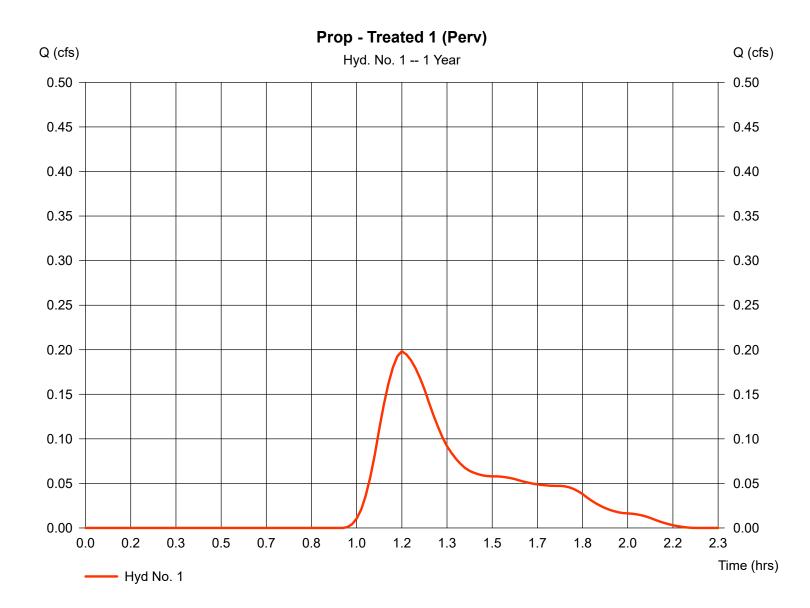
Summary Report	. 122
łydrograph Reports	
Hydrograph No. 1, SCS Runoff, Prop - Treated 1 (Perv)	
Hydrograph No. 2, SCS Runoff, Prop - Treated 1 (Imp)	
Hydrograph No. 3, Combine, Prop - Treated 1	
Hydrograph No. 4, Reservoir, Route 1	126
Hydrograph No. 5, SCS Runoff, Prop - Treated 2 (Perv)	127
Hydrograph No. 6, SCS Runoff, Prop - Treated 2 (Imp)	. 128
Hydrograph No. 7, Combine, Prop - Treated 2	. 129
Hydrograph No. 8, Reservoir, Route 2	130
Hydrograph No. 9, SCS Runoff, Prop - Treated 3 (Perv)	13′
Hydrograph No. 10, SCS Runoff, Prop - Treated 3 (Imp)	
Hydrograph No. 11, Combine, Prop - Treated 3	. 133
Hydrograph No. 12 Reservoir Route 3	134

Hydrograph Summary Report

Hydraflow Hydrographs by Intelisolve v9.25

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph description
1	SCS Runoff	0.198	1	70	278				Prop - Treated 1 (Perv)
2	SCS Runoff	1.323	1	65	1,613				Prop - Treated 1 (Imp)
3	Combine	1.433	1	65	1,891	1, 2			Prop - Treated 1
4	Reservoir	0.000	1	n/a	0	3	75.83	1,891	Route 1
5	SCS Runoff	0.159	1	76	297				Prop - Treated 2 (Perv)
6	SCS Runoff	0.906	1	70	1,465				Prop - Treated 2 (Imp)
7	Combine	1.036	1	71	1,761	5, 6			Prop - Treated 2
8	Reservoir	0.000	1	n/a	0	7	73.23	1,761	Route 2
9	SCS Runoff	0.511	1	78	1,031				Prop - Treated 3 (Perv)
10	SCS Runoff	5.690	1	65	7,004				Prop - Treated 3 (Imp)
11	Combine	5.814	1	65	8,035	4, 8, 9,			Prop - Treated 3
12	Reservoir	0.000	1	n/a	0	10 11	67.51	8,035	Route 3
21-210-wq.gpw					Return Period: 1 Year			Wednesday, Apr 16, 2025	

Hydraflow Hydrographs by Intelisolve v9.25


Wednesday, Apr 16, 2025

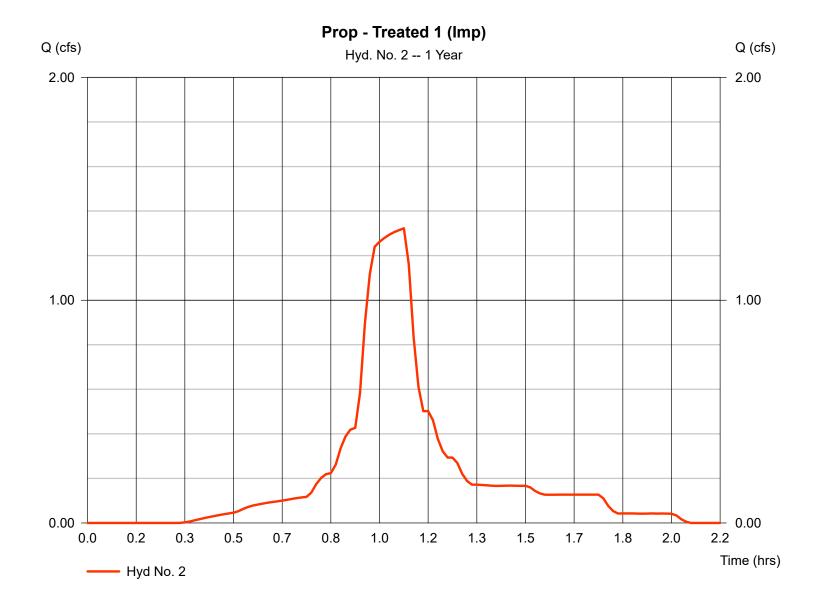
Hyd. No. 1

Prop - Treated 1 (Perv)

Hydrograph type = SCS Runoff Peak discharge = 0.198 cfsStorm frequency Time to peak = 1 yrs $= 1.17 \, hrs$ Time interval = 1 min Hyd. volume = 278 cuft Drainage area = 0.351 acCurve number = 82* Basin Slope = 0.0 % Hydraulic length = 0 ftTc method = TR55 Time of conc. (Tc) = 9.20 min Total precip. = 1.25 inDistribution = Custom Storm duration = NJWaterQuality.cds Shape factor = 484

^{*} Composite (Area/CN) = [(0.196 x 79) + (0.155 x 86)] / 0.351

Hydraflow Hydrographs by Intelisolve v9.25

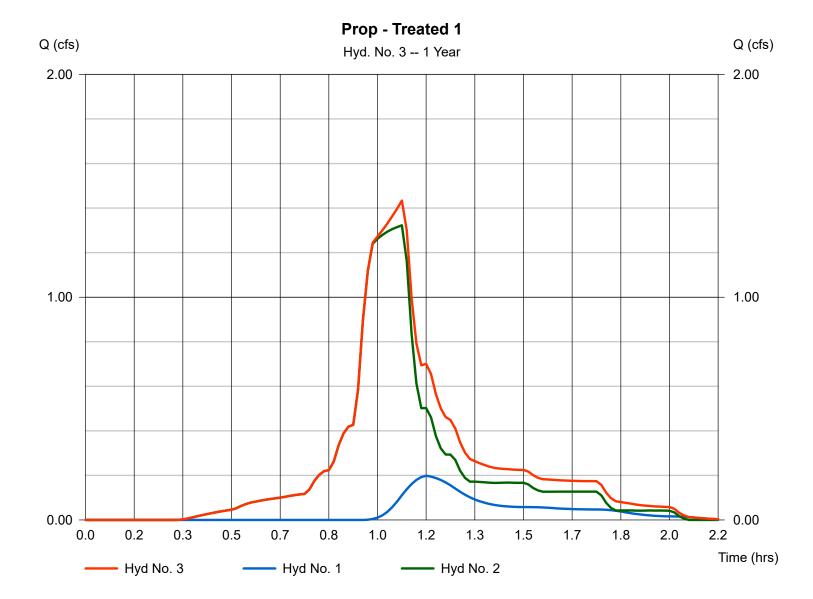

Wednesday, Apr 16, 2025

Hyd. No. 2

Prop - Treated 1 (Imp)

= 1.323 cfsHydrograph type = SCS Runoff Peak discharge Storm frequency Time to peak = 1 yrs $= 1.08 \, hrs$ Time interval = 1 min Hyd. volume = 1,613 cuftDrainage area = 0.458 acCurve number = 98 Basin Slope = 0.0 % Hydraulic length = 0 ftTc method = TR55 Time of conc. (Tc) $= 1.60 \, \text{min}$ Distribution Total precip. = 1.25 in= Custom = 484

= NJWaterQuality.cds Storm duration Shape factor


Hydraflow Hydrographs by Intelisolve v9.25

Wednesday, Apr 16, 2025

Hyd. No. 3

Prop - Treated 1

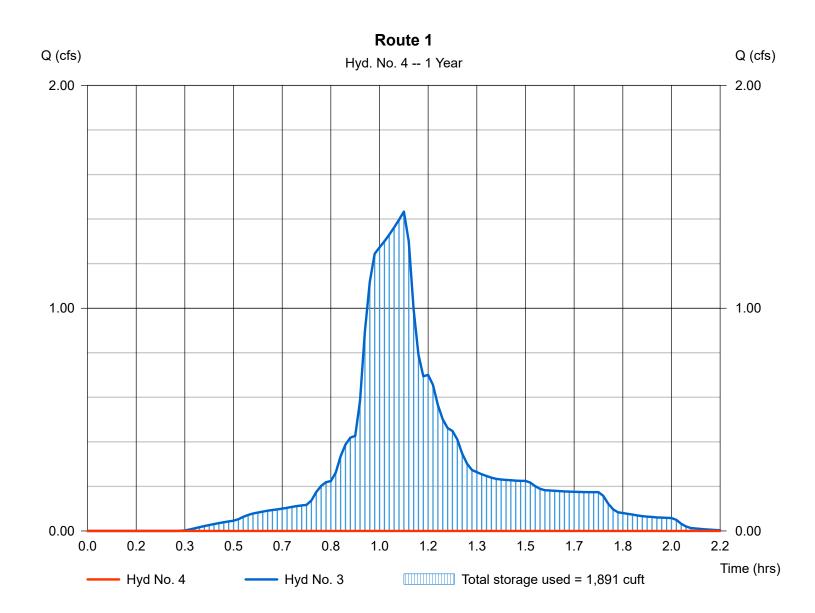
Hydrograph type = Combine Storm frequency = 1 yrs Time interval = 1 min Inflow hyds. = 1, 2 Peak discharge = 1.433 cfs
Time to peak = 1.08 hrs
Hyd. volume = 1,891 cuft
Contrib. drain. area = 0.809 ac

Hydraflow Hydrographs by Intelisolve v9.25

Wednesday, Apr 16, 2025

Hyd. No. 4

Route 1


Hydrograph type = Reservoir
Storm frequency = 1 yrs
Time interval = 1 min

Inflow hyd. No. = 3 - Prop - Treated 1

Reservoir name = Basin 1

Peak discharge = 0.000 cfs
Time to peak = n/a
Hyd. volume = 0 cuft
Max. Elevation = 75.83 ft
Max. Storage = 1,891 cuft

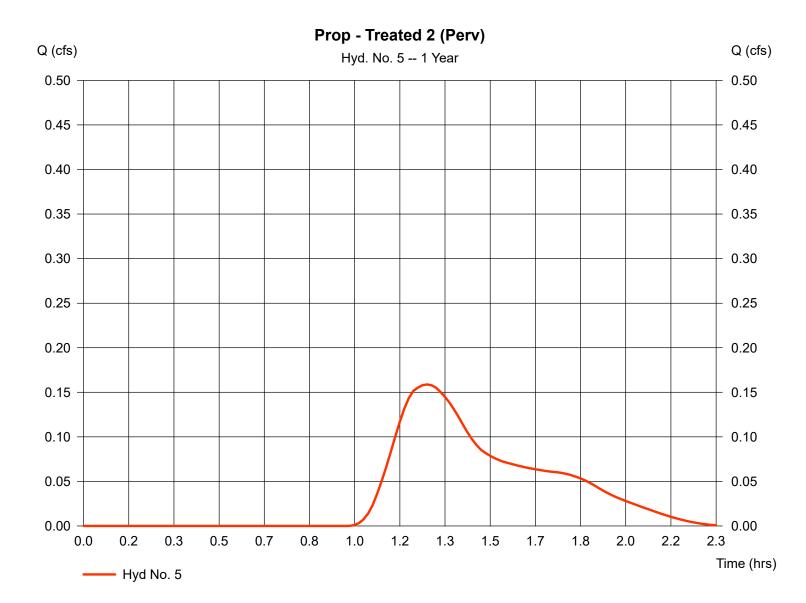
Storage Indication method used.

Hydraflow Hydrographs by Intelisolve v9.25

Wednesday, Apr 16, 2025

Hyd. No. 5

Prop - Treated 2 (Perv)


Hydrograph type = SCS Runoff
Storm frequency = 1 yrs
Time interval = 1 min
Drainage area = 0.535 ac
Basin Slope = 0.0 %
Tc method = TR55

Total precip. = 1.25 in

Storm duration = NJWaterQuality.cds

Peak discharge = 0.159 cfs
Time to peak = 1.27 hrs
Hyd. volume = 297 cuft
Curve number = 79
Hydraulic length = 0 ft
Time of conc. (Tc) = 14.10 min
Distribution = Custom

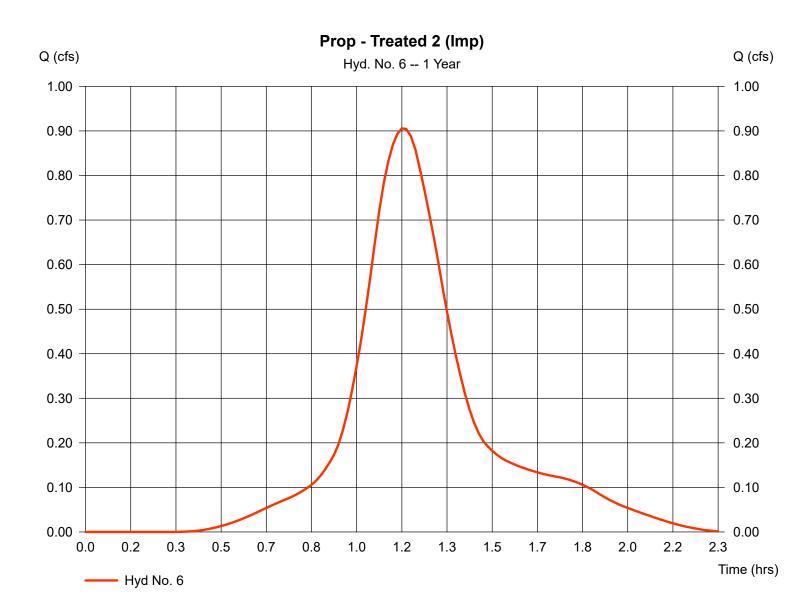
Shape factor = 484

Hydraflow Hydrographs by Intelisolve v9.25

Wednesday, Apr 16, 2025

Hyd. No. 6

Prop - Treated 2 (Imp)

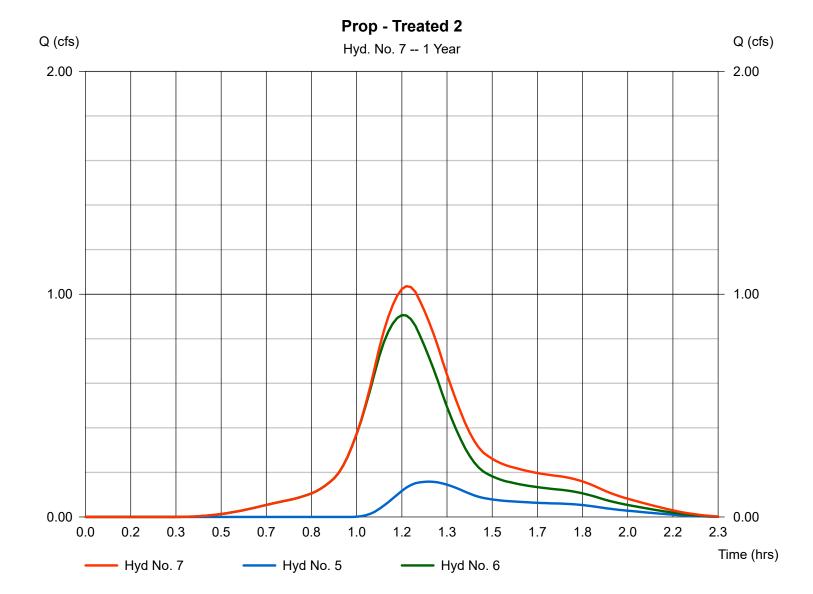

Hydrograph type = SCS Runoff
Storm frequency = 1 yrs
Time interval = 1 min
Drainage area = 0.390 ac
Basin Slope = 0.0 %
Tc method = TR55

Total precip. = 1.25 in

Storm duration = NJWaterQuality.cds

Peak discharge = 0.906 cfs
Time to peak = 1.17 hrs
Hyd. volume = 1,465 cuft
Curve number = 98
Hydraulic length = 0 ft
Time of conc. (Tc) = 13.70 min

Distribution = Custom Shape factor = 484


Hydraflow Hydrographs by Intelisolve v9.25

Wednesday, Apr 16, 2025

Hyd. No. 7

Prop - Treated 2

Hydrograph type = Combine Storm frequency = 1 yrs Time interval = 1 min Inflow hyds. = 5, 6 Peak discharge = 1.036 cfs
Time to peak = 1.18 hrs
Hyd. volume = 1,761 cuft
Contrib. drain. area = 0.925 ac

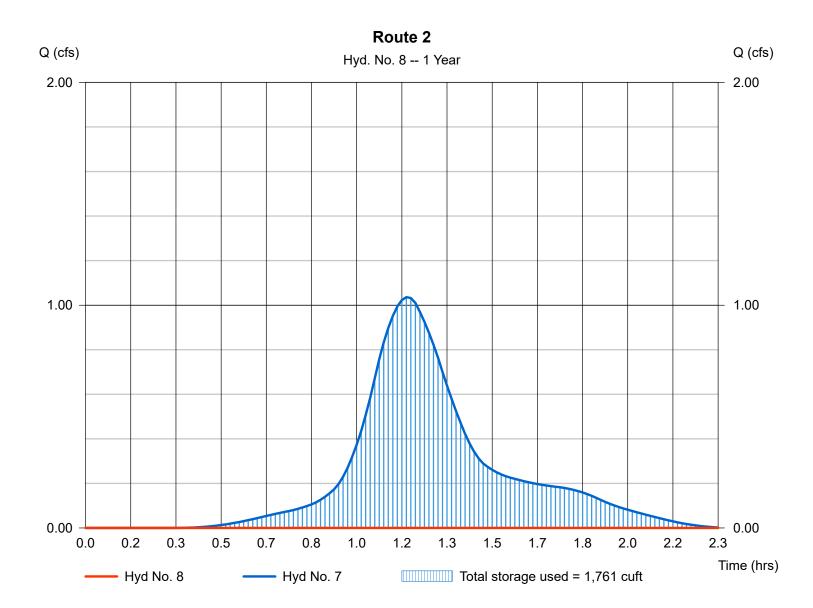
Hydraflow Hydrographs by Intelisolve v9.25

Wednesday, Apr 16, 2025

= 0.000 cfs

= n/a

= 0 cuft


Hyd. No. 8

Route 2

Hydrograph type = Reservoir Peak discharge
Storm frequency = 1 yrs Time to peak
Time interval = 1 min Hyd. volume

Inflow hyd. No. = 7 - Prop - Treated 2 Max. Elevation = 73.23 ft
Reservoir name = Basin 2 Max. Storage = 1,761 cuft

Storage Indication method used.

Hydraflow Hydrographs by Intelisolve v9.25

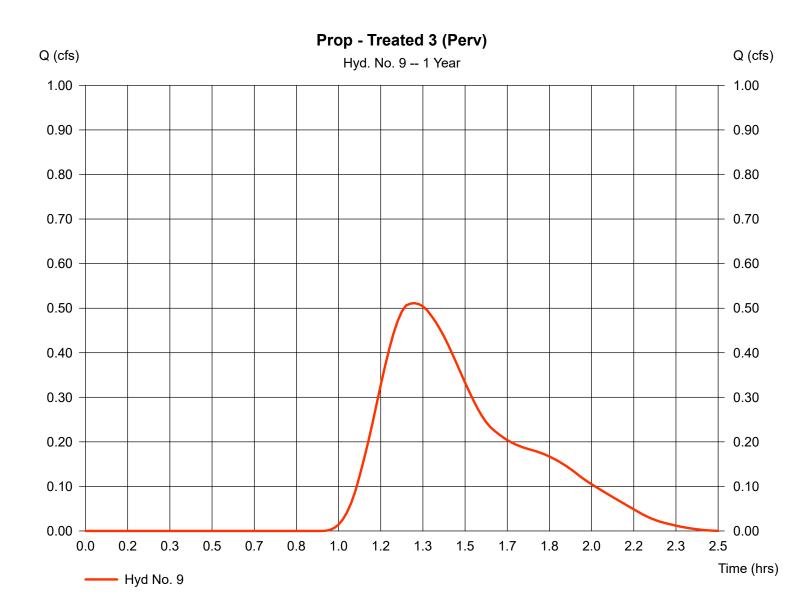
Wednesday, Apr 16, 2025

= Custom

Hyd. No. 9

Total precip.

Prop - Treated 3 (Perv)


Hydrograph type = SCS Runoff Peak discharge = 0.511 cfsStorm frequency Time to peak = 1 yrs= 1.30 hrsTime interval = 1 min Hyd. volume = 1,031 cuftDrainage area = 1.162 acCurve number = 83*

Distribution

Basin Slope = 0.0 % Hydraulic length = 0 ft
Tc method = TR55 Time of conc. (Tc) = 19.00 min

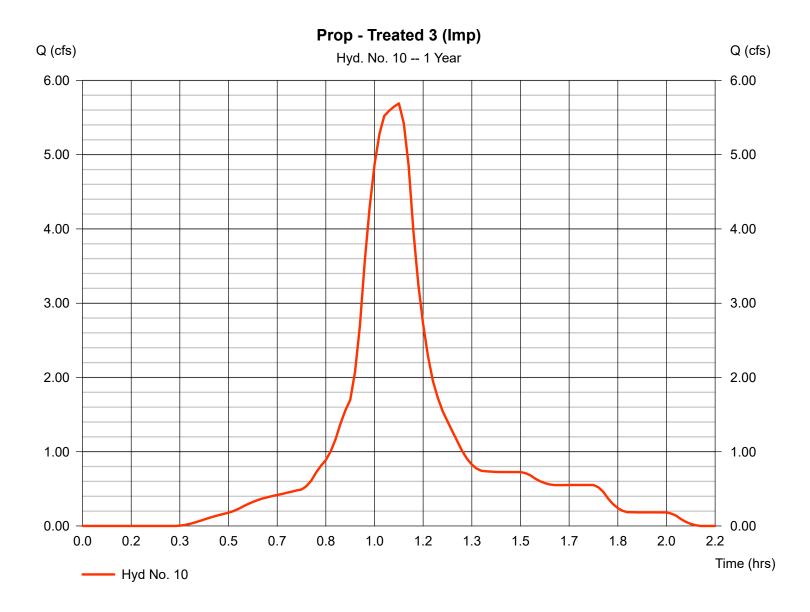
Storm duration = NJWaterQuality.cds Shape factor = 484

= 1.25 in

^{*} Composite (Area/CN) = [(0.456 x 79) + (0.706 x 86)] / 1.162

Hydraflow Hydrographs by Intelisolve v9.25

Wednesday, Apr 16, 2025

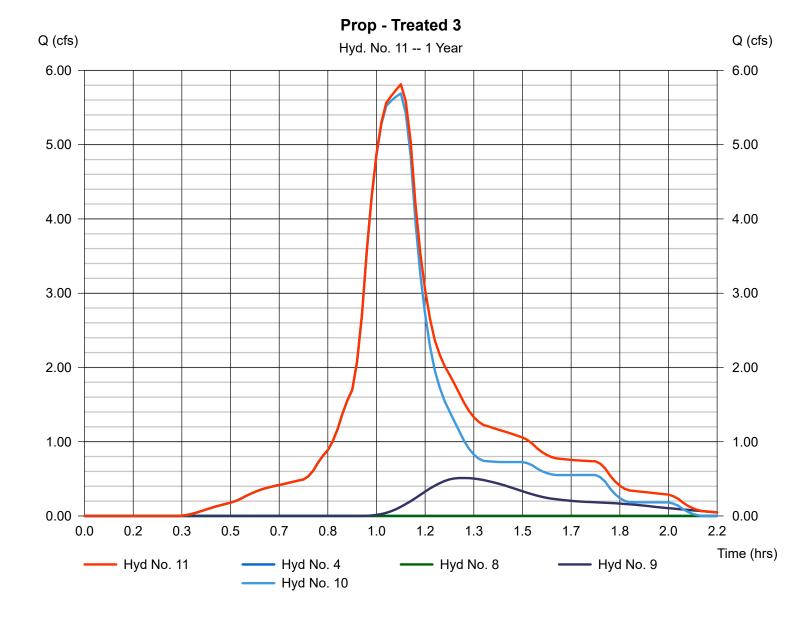

Hyd. No. 10

Prop - Treated 3 (Imp)

Hydrograph type = SCS Runoff
Storm frequency = 1 yrs
Time interval = 1 min
Drainage area = 1.865 ac
Basin Slope = 0.0 %
Tc method = TR55
Total precip. = 1.25 in

Storm duration = NJWaterQuality.cds

Peak discharge = 5.690 cfsTime to peak $= 1.08 \, hrs$ Hyd. volume = 7,004 cuftCurve number = 98 Hydraulic length = 0 ftTime of conc. (Tc) $= 3.90 \, \text{min}$ Distribution = Custom Shape factor = 484


Hydraflow Hydrographs by Intelisolve v9.25

Wednesday, Apr 16, 2025

Hyd. No. 11

Prop - Treated 3

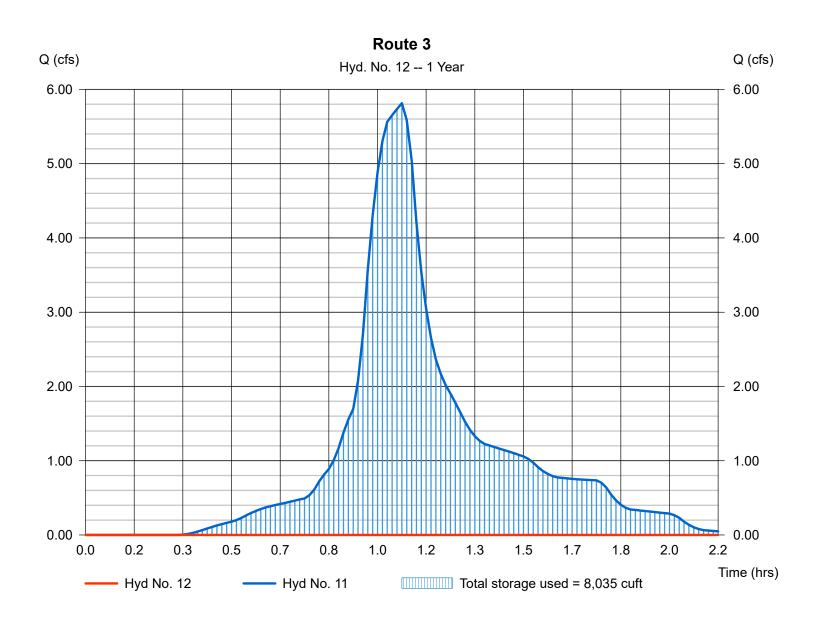
Hydrograph type = Combine Storm frequency = 1 yrs Time interval = 1 min Inflow hyds. = 4, 8, 9, 10 Peak discharge = 5.814 cfs
Time to peak = 1.08 hrs
Hyd. volume = 8,035 cuft
Contrib. drain. area = 3.027 ac

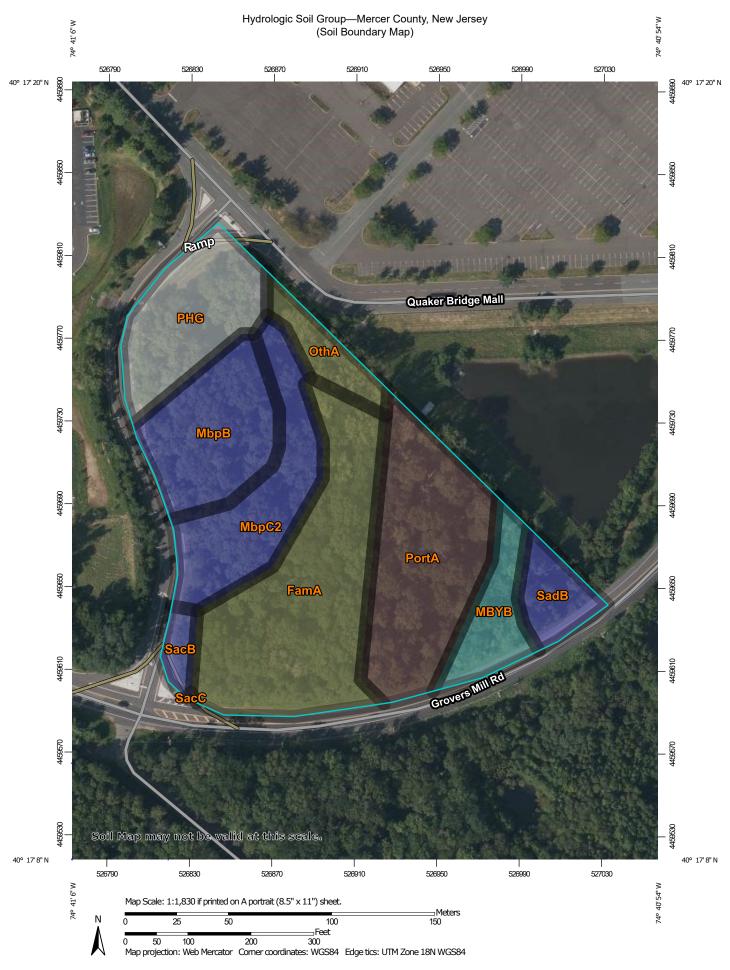
Hydraflow Hydrographs by Intelisolve v9.25

Wednesday, Apr 16, 2025

Hyd. No. 12

Route 3


Hydrograph type = Reservoir Storm frequency = 1 yrs Time interval = 1 min


Inflow hyd. No. = 11 - Prop - Treated 3

Reservoir name = Basin 3

Peak discharge = 0.000 cfs
Time to peak = n/a
Hyd. volume = 0 cuft
Max. Elevation = 67.51 ft
Max. Storage = 8,035 cuft

Storage Indication method used.

MAP LEGEND MAP INFORMATION The soil surveys that comprise your AOI were mapped at Area of Interest (AOI) С 1:24.000. Area of Interest (AOI) C/D Soils Warning: Soil Map may not be valid at this scale. D Soil Rating Polygons Enlargement of maps beyond the scale of mapping can cause Not rated or not available Α misunderstanding of the detail of mapping and accuracy of soil **Water Features** line placement. The maps do not show the small areas of A/D Streams and Canals contrasting soils that could have been shown at a more detailed В Transportation B/D Rails ---Please rely on the bar scale on each map sheet for map measurements. Interstate Highways C/D Source of Map: Natural Resources Conservation Service **US Routes** Web Soil Survey URL: D Major Roads Coordinate System: Web Mercator (EPSG:3857) Not rated or not available -Local Roads Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts Soil Rating Lines Background distance and area. A projection that preserves area, such as the Aerial Photography Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required. This product is generated from the USDA-NRCS certified data as of the version date(s) listed below. B/D Soil Survey Area: Mercer County, New Jersey Survey Area Data: Version 17, Aug 31, 2021 Soil map units are labeled (as space allows) for map scales 1:50.000 or larger. D Not rated or not available Date(s) aerial images were photographed: Sep 6, 2020—Sep 21. 2020 **Soil Rating Points** The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background A/D imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident. B/D

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
FamA	Fallsington sandy loams, 0 to 2 percent slopes, northern coastal plain	C/D	2.1	26.3%
MbpB	Matapeake loam, 2 to 5 percent slopes	В	1.0	12.6%
MbpC2	Matapeake loam, 5 to 10 percent slopes, eroded	В	1.0	12.9%
МВҮВ	Mattapex and Bertie loams, 0 to 5 percent slopes	С	0.5	6.1%
OthA	Othello silt loams, 0 to 2 percent slopes, northern coastal plain	C/D	0.3	4.1%
PHG	Pits, sand and gravel		0.9	11.9%
PortA	Portsmouth variant silt loam, 0 to 2 percent slopes	B/D	1.6	19.9%
SacB	Sassafras sandy loam, 2 to 5 percent slopes, Northern Coastal Plain	В	0.1	1.8%
SacC	Sassafras sandy loam, 5 to 10 percent slopes, Northern Coastal Plain	В	0.0	0.0%
SadB	Sassafras gravelly sandy loam, 2 to 5 percent slopes	В	0.3	4.3%
Totals for Area of Inter	rest	7.9	100.0%	

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

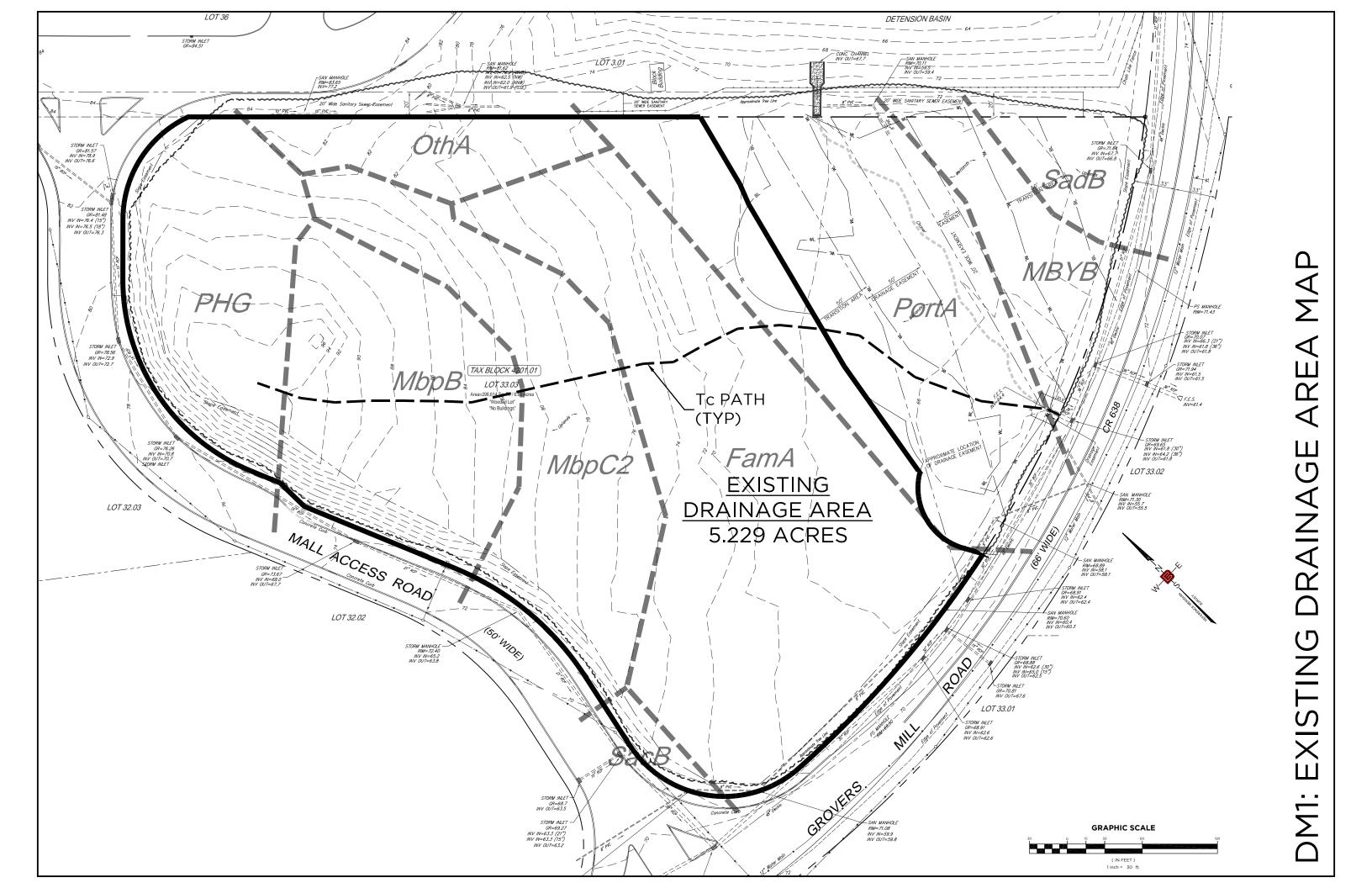
The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

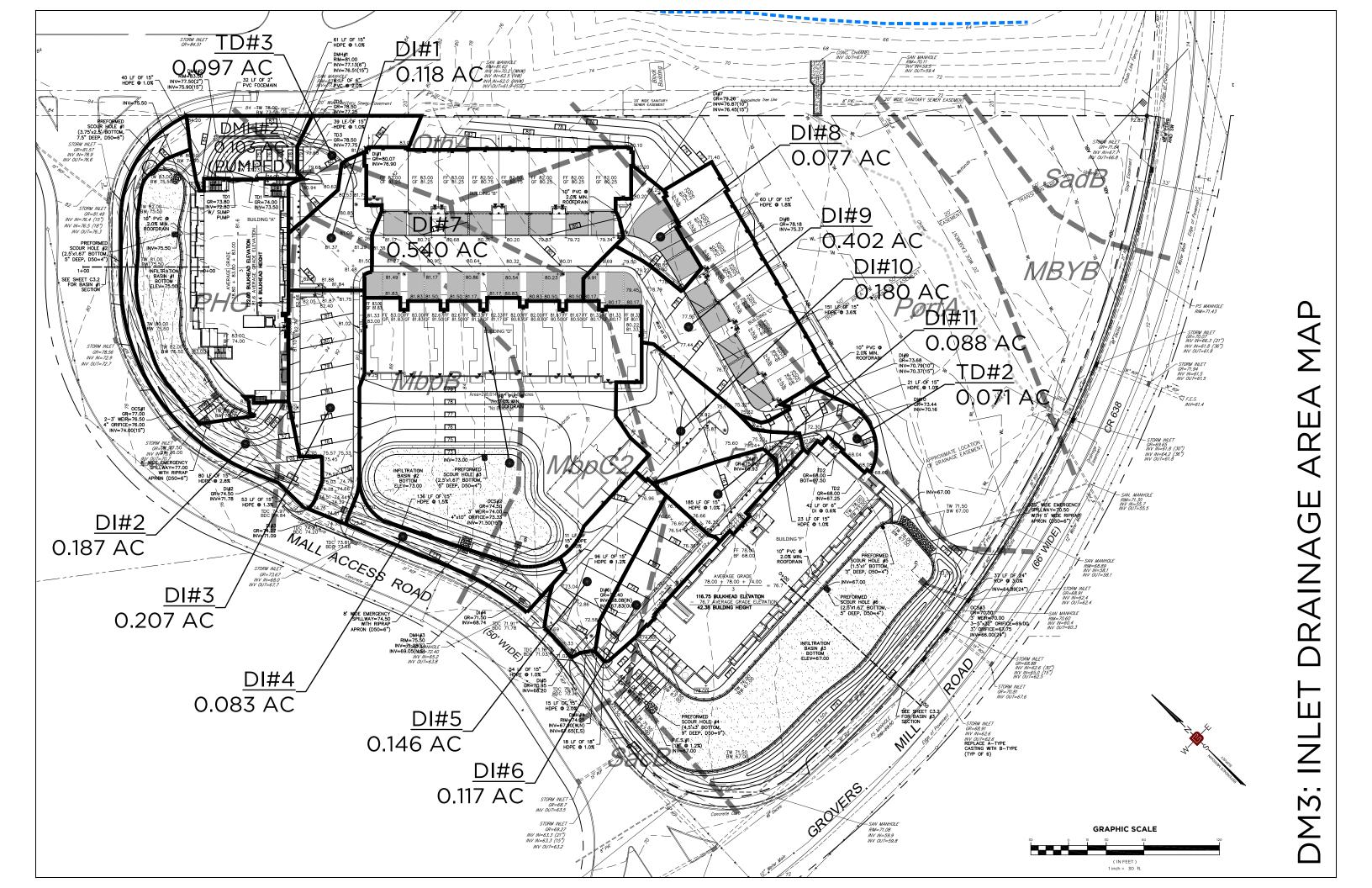
Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.


If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.


Rating Options

Aggregation Method: Dominant Condition

Component Percent Cutoff: None Specified

Tie-break Rule: Higher

